数列公式汇总.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 公式 汇总
- 资源描述:
-
人教版数学必修五 第二章 数列 重难点解析 第二章 课文目录 2.1 数列的概念与简单表示法 2.2 等差数列 2.3 等差数列的前n项和 2.4 等比数列 2.5 等比数列前n项和 【重点】 1、数列及其有关概念,通项公式及其应用。 2、根据数列的递推公式写出数列的前几项。 3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。 4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。 5、等比数列的定义及通项公式,等比中项的理解与应用。 6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式 【难点】 1、根据数列的前n项观察、归纳数列的一个通项公式。 2、理解递推公式与通项公式的关系。 3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。 4、灵活应用等差数列前n项公式解决一些简单的有关问题。 5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。 6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。 一、数列的概念与简单表示法 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. ⒊数列的一般形式: ,或简记为,其中是数列的第n项 ⒋ 数列的通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 注意:⑴并不是所有数列都能写出其通项公式,如上述数列④; ⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是,也可以是. ⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项. 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系: 数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数,当自变量从小到大依次取值时对应的一列函数值。 反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1)、 f(2)、 f(3)、 f(4)…,f(n),… 6.数列的分类: 1)根据数列项数的多少分: 有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列 2)根据数列项的大小分: 递增数列:从第2项起,每一项都不小于它的前一项的数列。 递减数列:从第2项起,每一项都不大于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列 7.数列的表示方法 (1)通项公式法 如果数列的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。 如数列 的通项公式为 ; 的通项公式为 ; 的通项公式为 ; (2)图象法 启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势. (3)递推公式法 如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。 递推公式也是给出数列的一种方法。 如下数字排列的一个数列:3,5,8,13,21,34,55,89 递推公式为: 4、列表法 .简记为 . 典型例题: 例1:根据下面数列的前几项的值,写出数列的一个通项公式: (1) 3, 5, 9, 17, 33,……; (2) , , , , , ……; (3) 0, 1, 0, 1, 0, 1,……; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ……; (5) 2, -6, 12, -20, 30, -42,……. 解:(1) =2n+1; (2) =; (3) =; (4) 将数列变形为1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ……, ∴= ; (5) 将数列变形为1×2, -2×3, 3×4, -4×5, 5×6,……, ∴ = 例2:设数列满足写出这个数列的前五项。 解: 二、等差数列 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。 ⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{},若-=d (与n无关的数或字母),n≥2,n∈N,则此数列是等差数列,d 为公差。 2.等差数列的通项公式:【或】 等差数列定义是由一数列相邻两项之间关系而得若一等差数列的首项是,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: ∴已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。 由上述关系还可得: 即: 则:= 即等差数列的第二通项公式 ∴ d= 3.有几种方法可以计算公差d ① d=- ② d= ③ d= 4.结论:(性质)在等差数列中,若m+n=p+q,则, 即 m+n=p+q (m, n, p, q ∈N ) 但通常 ①由 推不出m+n=p+q ,② 典型例题: 例1:⑴求等差数列8,5,2…的第20项 ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 解: 例3:求等差数列3,7,11,……的第4项与第10项. 例5:100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. 例6:-20是不是等差数列0,-3,-7,……的项?如果是,是第几项?如果不是,说明理由. 例8:在等差数列{}中,若+=9, =7, 求 , . 三、等差数列的前n项和 1.等差数列的前项和公式1: 证明: ① ② ①+②: ∵ ∴ 由此得: 从而我们可以验证高斯十岁时计算上述问题的正确性 2. 等差数列的前项和公式2: 用上述公式要求必须具备三个条件: 但 代入公式1即得: 此公式要求必须已知三个条件: (有时比较有用) 对等差数列的前项和公式2:可化成式子: ,当d≠0,是一个常数项为零的二次式 3. 由的定义可知,当n=1时,=;当n≥2时,=-, 即=. 4. 对等差数列前项和的最值问题有两种方法: (1) 利用: 当>0,d<0,前n项和有最大值可由≥0,且≤0,求得n的值 当<0,d>0,前n项和有最小值可由≤0,且≥0,求得n的值 (2) 利用: 由利用二次函数配方法求得最值时n的值 典型例题: 例2:等差数列-10,-6,-2,2,·······前9项的和多少? 解: 例3:等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项. 解 例6:已知等差数列{an}中,S3=21,S6=64,求数列{|an|}的前n项和Tn. 例7: 在等差数列{an}中,已知a6+a9+a12+a15=34,求前20项之和. 例8:已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,求它的前20项的和S20的值. 例9:等差数列{an}、{bn}的前n项和分别为Sn和Tn,若 [ ] 例10: 解答下列各题: (1)已知:等差数列{an}中a2=3,a6=-17,求a9; (2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数; (3)已知:等差数列{an}中,a4+a6+a15+a17=50,求S20; (4)已知:等差数列{an}中,an=33-3n,求Sn的最大值. 四、等比数列 1.等比数列: 一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即:=q(q≠0) 1°“从第二项起”与“前一项”之比为常数(q) {}成等比数列=q(,q≠0) 2° 隐含:任一项 “≠0”是数列{}成等比数列的必要非充分条件. 3° q= 1时,{an}为常数。 2.等比数列的通项公式1: 由等比数列的定义,有: ; ; ; … … … … … … … 3.等比数列的通项公式2: 4.既是等差又是等比数列的数列:非零常数列 5.等比数列与指数函数的关系: 等比数列{}的通项公式,它的图象是分布在曲线(q>0)上的一些孤立的点。 当,q >1时,等比数列{}是递增数列; 当,,等比数列{}是递增数列; 当,时,等比数列{}是递减数列; 当,q >1时,等比数列{}是递减数列; 当时,等比数列{}是摆动数列;当时,等比数列{}是常数列。 6.等比中项: 如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项. 即G=±(a,b同号) 如果在a与b中间插入一个数G,使a,G,b成等比数列,则, 反之,若G=ab,则,即a,G,b成等比数列 ∴a,G,b成等比数列G=ab(a·b≠0) 7.等比数列的性质: 若m+n=p+k,则 在等比数列中,m+n=p+q,有什么关系呢? 由定义得: , 则 8.判断等比数列的方法:定义法,中项法,通项公式法 9.等比数列的增减性:当q>1, >0或0<q<1, <0时, {}是递增数列;当q>1, <0,或0<q<1, >0时, {}是递减数列;当q=1时, {}是常数列;当q<0时, {}是摆动数列; 10.证明数列为等比数列的方法: (1)定义法:若 (2)等比中项法:若 (3)通项法:若 (4)前n项和法:若数列为等比数列。 典型例题: 例1:求下列各等比数列的通项公式: (1)=-2, =-8; (2)=5, 且2=-3; (3)=5, 且 解: 例2:求下面等比数列的第4项与第5项: (1)5,-15,45,……; (2)1.2,2.4,4.8,……; (3),……. 解: 例3:一个等比数列的第9项是,公比是-,求它的第1项. 解: 例4:一个等比数列的第2项是10,第3项是20,求它的第1项与第4项. 解: 例7:(1) 已知{}是等比数列,且, 求 解: 例9:在等比数列中,,求该数列前七项之积 解: 例10:在等比数列中,,,求, 解: 五、等比数列的前n项和 1、 等比数列的前n项和公式: 当时, ① 或 ② 当q=1时, 当已知, q, n 时用公式①;当已知, q, 时,用公式②. 公式的推导方法一: 一般地,设等比数列它的前n项和是 由 得 ∴当时, ① 或 ② 当q=1时, 公式的推导方法二: 有等比数列的定义, 根据等比的性质,有 即 (结论同上) 围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式. 公式的推导方法三: = == (结论同上) 2、重要结论 {an}成等比数列,公比为q (1)也为等比数列,且公比为, (2)也成等比数列,且公比为q2 (3)成等比,且an>0,则lga1,lga2,lga3…成等差 [注](1) (2) 典型例题: 例1:求和: . 解: 等 差 数 列 等 比 数 列 定 义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.这个常数叫公差. 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列.这个常数叫公比. 递 推 关 系 ① () ② () ③ () ① () ② () ③ () 通 项 公 式 ① () ② () ① () ② () 求 和 公 式 ① () ② () ③() ② () ③ (,) 主 要 性 质 ①若p+q=s+r, p、q、s、rN*,则 . ②对任意c>0,c1,为等比数列. ③. ④若、分别为两等差数列,则 为等差数列. ⑥若为正项等差自然数列,则为等差数列. ⑦为等差数列. ①若p+q=s+r, p、q、s、rN*,则 . ②对任意c>0,c1, 若an恒大于0,则为等差数列. ③. ④若、为两等比数列,则为等比数列. ⑥若为正项等差自然数列,则为等比数列. ⑦为等比数列. 10展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




数列公式汇总.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/10645182.html