云南省江川区第二中学2025年高一数学第二学期期末复习检测模拟试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 江川 第二 中学 2025 年高 数学 学期 期末 复习 检测 模拟 试题 解析
- 资源描述:
-
云南省江川区第二中学2025年高一数学第二学期期末复习检测模拟试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若角的终边经过点,则( ) A. B. C. D. 2.在中,内角A,B,C所对的边分别为a,b,c,若,,则一定是 ( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形 3.某产品的广告费用 (单位:万元)与销售额 (单位:万元)的统计数据如下表: 根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为( ) A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元 4.已知,其中,则( ) A. B. C. D. 5.已知扇形的半径为,圆心角为,则该扇形的面积为( ) A. B. C. D. 6.已知向量,且,则的值为() A.6 B.-6 C. D. 7.在等差数列中,,则等于( ) A.5 B.6 C.7 D.8 8.已知实数满足约束条件,则目标函数的最小值为( ) A. B. C.1 D.5 9.若直线与直线互相平行,则的值为( ) A.4 B. C.5 D. 10.函数图像的一条对称轴方程为() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.设等比数列的首项为,公比为,所有项和为1,则首项的取值范围是____________. 12.已知,则______. 13.已知与之间的一组数据,则与的线性回归方程必过点__________. 14.若,则______. 15.若点,是圆C:上不同的两点,且,则的值为______. 16.已知数列前项和,则该数列的通项公式______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知数列的前项和 (1)求的通项公式; (2)若数列满足:,求的前项和(结果需化简) 18.如图所示,在直三棱柱中,,,M、N分别为、的中点. 求证:平面; 求证:平面. 19.已知等差数列的前n项和为,关于x的不等式的解集为. (1)求数列的通项公式; (2)若数列满足,求数列的前n项和. 20.16种食品所含的热量值如下: 111 123 123 164 430 190 175 236 430 320 250 280 160 150 210 123 (1)求数据的中位数与平均数; (2)用这两种数字特征中的哪一种来描述这个数据集更合适? 21.已知数列和中,数列的前n项和为,若点在函数的图象上,点在函数的图象上.设数列. (1)求数列的通项公式; (2)求数列的前项和; (3)求数列的最大值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】 根据任意角的三角函数的定义,可以直接求到本题答案. 【详解】 因为点在角的终边上,所以. 故选:B 本题主要考查利用任意角的三角函数的定义求值. 2、D 【解析】 利用余弦定理、等边三角形的判定方法即可得出. 【详解】 由余弦定理得,则,即,所以. ∵ ∴是等边三角形. 故选D. 本题考查了余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,熟练掌握余弦定理是解答本题的关键. 3、B 【解析】 试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元 考点:回归方程 4、D 【解析】 先根据同角三角函数关系求得,再根据二倍角正切公式得结果. 【详解】 因为,且, 所以,因为,所以, 因此,从而,,选D. 本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题. 5、A 【解析】 化圆心角为弧度值,再由扇形面积公式求解即可. 【详解】 扇形的半径为,圆心角为,即, 该扇形的面积为,故选. 本题主要考查扇形的面积公式的应用. 6、A 【解析】 两向量平行,內积等于外积。 【详解】 ,所以选A. 本题考查两向量平行的坐标运算,属于基础题。 7、C 【解析】 由数列为等差数列,当时,有,代入求解即可. 【详解】 解:因为数列为等差数列, 又, 则, 又, 则, 故选:C. 本题考查了等差数列的性质,属基础题. 8、A 【解析】 作出不等式组表示的平面区域,再观察图像即可得解. 【详解】 解:先作出不等式组表示的平面区域,如图所示, 由图可知目标函数所对应的直线过点时目标函数取最小值, 则, 故选:A. 本题考查了简单的线性规划问题,重点考查了数形结合的数学思想方法,属基础题. 9、C 【解析】 根据两条存在斜率的直线平行,斜率相等且在纵轴上的截距不相等这一性质,可以求出的值. 【详解】 直线的斜率为,在纵轴的截距为,因此若直线与直线互相平行,则一定有直线的斜率为,在纵轴的截距不等于,于是有且,解得,故本题选C. 本题考查了已知两直线平行求参数问题.其时本题也可以运用下列性质解题: 若直线与直线平行, 则有且. 10、B 【解析】 对称轴为 【详解】 依题意有 解得 故选B 本题考查的对称轴,属于基础题。 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】 由题意可得得且,可得首项的取值范围. 【详解】 解:由题意得:,, 故答案为:. 本题主要考查等比数列前n项的和、数列极限的运算,属于中档题. 12、 【解析】 利用同角三角函数的基本关系将弦化切,再代入计算可得. 【详解】 解:, 故答案为: 本题考查同角三角函数的基本关系,齐次式的计算,属于基础题. 13、 【解析】 根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解. 【详解】 由题意可知,与的线性回归方程必过样本中心点 ,, 所以线性回归方程必过. 故答案为: 本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题. 14、 【解析】 , 则, 故答案为. 15、 【解析】 由,再结合坐标运算即可得解. 【详解】 解:因为点,是圆C:上不同的两点, 则,, 又 所以, 即, 故答案为:. 本题考查了向量模的运算,重点考查了运算能力,属基础题. 16、 【解析】 由,n≥2时,两式相减,可得{an}的通项公式; 【详解】 ∵Sn=2n2(n∈N*),∴n=1时,a1=S1=2; n≥2时,an=Sn﹣=4n﹣2,a1=2也满足上式,∴an=4n﹣2 故答案为 本题考查数列的递推式,考查数列的通项,属于基础题. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2); 【解析】 (1)运用数列的递推式得时,,时,,化简计算可得所求通项公式; (2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和. 【详解】 (1)可得 时, 则 (2)数列满足, 可得,即, 前项和 两式相减可得 化简可得 本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题. 18、(1)见解析; (2)见解析. 【解析】 (1)推导出,从而平面,进而,再由,,得是正方形,由此能证明平面. 取的中点F,连BF、推导出四边形BMNF是平行四边形,从而,由此能证明平面. 【详解】 证明:在直三棱柱中, 侧面底面ABC,且侧面底面, ,即, 平面, 平面, ,,是正方形, ,平面 取的中点F,连BF、 在中,N、F是中点, ,,又,, ,, 故四边形BMNF是平行四边形,, 而面,平面, 平面 本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题. 19、(1);(2). 【解析】 (1)根据不等式的解集,得到和,从而得到等差数列的公差,得到的通项公式; (2)由(1)得到的的通项,得到的通项,利用等比数列的求和公式,得到答案. 【详解】 (1)因为关于x的不等式的解集为, 所以得到,, 所以,, 为等差数列,设其公差为, 所以,所以, 所以 (2)因为,所以 所以是以为首项,为公比的等比数列, 所以. 本题考查一元二次不等式解集与系数的关系,求等差数列的通项,等比数列求和,属于简单题. 20、(1)中位数为:,平均数为:;(2)用平均数描述这个数据更合适. 【解析】 (1)根据中位数和平均数的定义计算即可; (2)根据平均数和平均数的优缺点进行选择即可. 【详解】 (1)将数据从小到大排列得: 111,123,123,123,150,160,164,175,190,210,236,250,280,320,430,430. 所以中位数为:, 平均数为: ; (2)用平均数描述这个数据更合适,理由如下:平均数反映的是总体的一个情况,中位数只是数列从小到大排列得到的最中间的一个数或两个数,所以平均数更能反映总体的一个整体情况. 本题考查数据的数字特征的计算及应用,考查基础知识和基本技能,属于常考题. 21、(1)(2)(3) 【解析】 (1)先根据题设知,再利用求得,验证符合,最后答案可得. (2)由题设可知,把代入,然后用错位相减法求和; (3)计算,判断其大于零时的范围,可得数列取最大值时的项数,进而可得最大值.. 【详解】 解:(1)由已知得:, ∵当时,, 又当时,符合上式. (2)由已知得: ① ② ②-①可得: (3) 令,得:, 又 且, 即为最大, 故最大值为. 本题主要考查了数列的递推式解决数列的通项公式和求和问题,考查数列最大项的求解,是中档题.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




云南省江川区第二中学2025年高一数学第二学期期末复习检测模拟试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/11517791.html