2025年九年级数学平行四边形的专项培优易错难题练习题及详细答案.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2025 九年级 数学 平行四边形 专项 培优易错 难题 练习题 详细 答案
- 资源描述:
-
-九年级数学平行四边形专题培优 易错 难题练习题及详细答案 一、平行四边形 1.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O直线分别交AB,CD边于点E,F. (1)求证:四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,求EF长. 【答案】(1)证明见解析;(2). 【解析】 分析:(1)根据平行四边形ABCD性质,判定△BOE≌△DOF(ASA),得出四边形BEDF对角线互相平分,进而得出结论; (2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF长. 详解:(1)证明:∵四边形ABCD是矩形,O是BD中点, ∴∠A=90°,AD=BC=4,AB∥DC,OB=OD, ∴∠OBE=∠ODF, 在△BOE和△DOF中, ∴△BOE≌△DOF(ASA), ∴EO=FO, ∴四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,BD⊥EF, 设BE=x,则 DE=x,AE=6-x, 在Rt△ADE中,DE2=AD2+AE2, ∴x2=42+(6-x)2, 解得:x= , ∵BD= =2, ∴OB=BD=, ∵BD⊥EF, ∴EO==, ∴EF=2EO=. 点睛:本题重要考察了矩形性质,菱形性质、勾股定理、全等三角形判定与性质,纯熟掌握矩形性质和勾股定理,证明三角形全等是处理问关键 2.已知:如图,在平行四边形ABCD中,O为对角线BD中点,过点O直线EF分别交AD,BC于E,F两点,连结BE,DF. (1)求证:△DOE≌△BOF. (2)当∠DOE等于多少度时,四边形BFDE为菱形?请阐明理由. 【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析. 【解析】 试题分析:(1)运用平行四边形性质以及全等三角形判定措施得出△DOE≌△BOF(ASA); (2)首先运用一组对边平行且相等四边形是平行四边形得出四边形EBFD是平行四边形,进而运用垂直平分线性质得出BE=ED,即可得出答案. 试题解析:(1)∵在▱ABCD中,O为对角线BD中点, ∴BO=DO,∠EDB=∠FBO, 在△EOD和△FOB中 , ∴△DOE≌△BOF(ASA); (2)当∠DOE=90°时,四边形BFDE为菱形, 理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形, ∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形. 考点:平行四边形性质;全等三角形判定与性质;菱形判定. 3.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD中点,射线BE交AD延长线于点F,连接CF. (1)求证:四边形BCFD是菱形; (2)若AD=1,BC=2,求BF长. 【答案】(1)证明见解析(2)2 【解析】 (1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD, ∵点E为CD中点,∴DE=EC, 在△BCE与△FDE中,, ∴△BCE≌△FDE,∴DF=BC, 又∵DF∥BC,∴四边形BCDF为平行四边形, ∵BD=BC,∴四边形BCFD是菱形; (2)∵四边形BCFD是菱形,∴BD=DF=BC=2, 在Rt△BAD中,AB=, ∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2. 4.如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB中点.已知AD=1,AB=2. (1)设BC=x,CD=y,求y有关x函数关系式,并写出定义域; (2)当∠B=70°时,求∠AEC度数; (3)当△ACE为直角三角形时,求边BC长. 【答案】(1);(2)∠AEC=105°;(3)边BC长为2或. 【解析】 试题分析:(1)过A作AH⊥BC于H,得到四边形ADCH为矩形.在△BAH中,由勾股定理即可得出结论. (2)取CD中点T,连接TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∠AET=∠B=70°. 又AD=AE=1,得到∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,即可得到结论. (3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°, 解△ABH即可得到结论. ②当∠CAE=90°时,易知△CDA∽△BCA,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A作AH⊥BC于H.由∠D=∠BCD=90°,得四边形ADCH为矩形. 在△BAH中,AB=2,∠BHA=90°,AH=y,HB=,∴, 则 (2)取CD中点T,联结TE,则TE是梯形中位线,得ET∥AD,ET⊥CD,∴∠AET=∠B=70°. 又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°. (3)分两种状况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°, 则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2. ②当∠CAE=90°时,易知△CDA∽△BCA,又, 则(舍负) 易知∠ACE<90°,因此边BC长为. 综上所述:边BC长为2或. 点睛:本题是四边形综合题.考察了梯形中位线,相似三角形判定与性质.解题关键是掌握梯形中常见辅助线作法. 5.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD. ①求证:四边形BFDE是菱形; ②直接写出∠EBF度数; (2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足关系,并阐明理由; (3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足数量关系. 【答案】(1)①详见解析;②60°.(2)IH=FH;(3)EG2=AG2+CE2. 【解析】 【分析】 (1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可. ②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可处理问题. (2)IH=FH.只要证明△IJF是等边三角形即可. (3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可处理问题. 【详解】 (1)①证明:如图1中, ∵四边形ABCD是矩形, ∴AD∥BC,OB=OD, ∴∠EDO=∠FBO, 在△DOE和△BOF中, , ∴△DOE≌△BOF, ∴EO=OF,∵OB=OD, ∴四边形EBFD是平行四边形, ∵EF⊥BD,OB=OD, ∴EB=ED, ∴四边形EBFD是菱形. ②∵BE平分∠ABD, ∴∠ABE=∠EBD, ∵EB=ED, ∴∠EBD=∠EDB, ∴∠ABD=2∠ADB, ∵∠ABD+∠ADB=90°, ∴∠ADB=30°,∠ABD=60°, ∴∠ABE=∠EBO=∠OBF=30°, ∴∠EBF=60°. (2)结论:IH=FH. 理由:如图2中,延长BE到M,使得EM=EJ,连接MJ. ∵四边形EBFD是菱形,∠B=60°, ∴EB=BF=ED,DE∥BF, ∴∠JDH=∠FGH, 在△DHJ和△GHF中, , ∴△DHJ≌△GHF, ∴DJ=FG,JH=HF, ∴EJ=BG=EM=BI, ∴BE=IM=BF, ∵∠MEJ=∠B=60°, ∴△MEJ是等边三角形, ∴MJ=EM=NI,∠M=∠B=60° 在△BIF和△MJI中, , ∴△BIF≌△MJI, ∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF, ∴IH⊥JF, ∵∠BFI+∠BIF=120°, ∴∠MIJ+∠BIF=120°, ∴∠JIF=60°, ∴△JIF是等边三角形, 在Rt△IHF中,∵∠IHF=90°,∠IFH=60°, ∴∠FIH=30°, ∴IH=FH. (3)结论:EG2=AG2+CE2. 理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM, ∵∠FAD+∠DEF=90°, ∴AFED四点共圆, ∴∠EDF=∠DAE=45°,∠ADC=90°, ∴∠ADF+∠EDC=45°, ∵∠ADF=∠CDM, ∴∠CDM+∠CDE=45°=∠EDG, 在△DEM和△DEG中, , ∴△DEG≌△DEM, ∴GE=EM, ∵∠DCM=∠DAG=∠ACD=45°,AG=CM, ∴∠ECM=90° ∴EC2+CM2=EM2, ∵EG=EM,AG=CM, ∴GE2=AG2+CE2. 【点睛】 考察四边形综合题、矩形性质、正方形性质、菱形判定和性质,等边三角形判定和性质,勾股定理等知识,解题关键是学会添加常用辅助线,构造全等三角形,学会转化思想思考问题. 6.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形边BC,CD上. (1)证明:BE=CF. (2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF面积与否发生变化?若不变,求出这个定值;假如变化,求出其最大值. (3)在(2)状况下,请探究△CEF面积与否发生变化?若不变,求出这个定值;假如变化,求出其最大值. 【答案】(1)见解析;(2);(3)见解析 【解析】 试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF; (2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题; (3)当正三角形AEF边AE与BC垂直时,边AE最短.△AEF面积会伴随AE变化而变化,且当AE最短时,正三角形AEF面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF面积就会最大. 试题解析:(1)证明:连接AC, ∵∠1+∠2=60°,∠3+∠2=60°, ∴∠1=∠3, ∵∠BAD=120°, ∴∠ABC=∠ADC=60° ∵四边形ABCD是菱形, ∴AB=BC=CD=AD, ∴△ABC、△ACD为等边三角形 ∴∠4=60°,AC=AB, ∴在△ABE和△ACF中, , ∴△ABE≌△ACF.(ASA) ∴BE=CF. (2)解:由(1)得△ABE≌△ACF, 则S△ABE=S△ACF. 故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC, 是定值. 作AH⊥BC于H点, 则BH=2, S四边形AECF=S△ABC = = =; (3)解:由“垂线段最短”可知, 当正三角形AEF边AE与BC垂直时,边AE最短. 故△AEF面积会伴随AE变化而变化,且当AE最短时, 正三角形AEF面积会最小, 又S△CEF=S四边形AECF﹣S△AEF,则△CEF面积就会最大. 由(2)得,S△CEF=S四边形AECF﹣S△AEF =﹣=. 点睛:本题考察了菱形每一条对角线平分一组对角性质,考察了全等三角形证明和全等三角形对应边相等性质,考察了三角形面积计算,本题中求证△ABE≌△ACF是解题关键. 7.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH. (1)求边EF长; (2)将正方形EFGH沿射线FB方向以每秒个单位速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1一直与y轴垂直,设平移时间为t秒(t>0). ①当点F1移动到点B时,求t值; ②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE重叠部分面积. 【答案】(1)EF=15;(2)①10;②120; 【解析】 【分析】 (1)根据已知点E(30,0),点D(0,40),求出直线DE直线解析式y=-x+40,可求出P点坐标,进而求出F点坐标即可; (2)①易求B(0,5),当点F1移动到点B时,t=10÷=10; ②F点移动到F'距离是t,F垂直x轴方向移动距离是t,当点H运动到直线DE上时,在Rt△F'NF中,=,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,,t=4,S=×(12+)×11=;当点G运动到直线DE上时,在Rt△F'PK中,=,PK=t-3,F'K=3t-9,在Rt△PKG'中,==,t=7,S=15×(15-7)=120. 【详解】 (1)设直线DE直线解析式y=kx+b, 将点E(30,0),点D(0,40), ∴, ∴, ∴y=﹣x+40, 直线AB与直线DE交点P(21,12), 由题意知F(30,15), ∴EF=15; (2)①易求B(0,5), ∴BF=10, ∴当点F1移动到点B时,t=10=10; ②当点H运动到直线DE上时, F点移动到F'距离是t, 在Rt△F'NF中,=, ∴FN=t,F'N=3t, ∵MH'=FN=t, EM=NG'=15﹣F'N=15﹣3t, 在Rt△DMH'中, , ∴, ∴t=4, ∴EM=3,MH'=4, ∴S=; 当点G运动到直线DE上时, F点移动到F'距离是t, ∵PF=3, ∴PF'=t﹣3, 在Rt△F'PK中, , ∴PK=t﹣3,F'K=3t﹣9, 在Rt△PKG'中,==, ∴t=7, ∴S=15×(15﹣7)=120. 【点睛】 本题考察一次函数图象及性质,正方形性质;掌握待定系数法求函数解析式,运用三角形正切值求边关系,运用勾股定理在直角三角形中建立边之间联络,精确确定阴影部分面积是解题关键. 8.已知,点是角平分线上任意一点,既有一种直角绕点旋转,两直角边,分别与直线,相交于点,点. (1)如图1,若,猜想线段,,之间数量关系,并阐明理由. (2)如图2,若点在射线上,且与不垂直,则(1)中数量关系与否仍成立?如成立,请阐明理由;如不成立,请写出线段,,之间数量关系,并加以证明. (3)如图3,若点在射线反向延长线上,且,,请直接写出线段长度. 【答案】(1)详见解析;(2)详见解析;(3) 【解析】 【分析】 (1)先证四边形为矩形,再证矩形为正方形,由正方形性质可得;(2)过点作于点,于点,证四边形为正方形,再证,可得;(3)根据,可得. 【详解】 解:(1)∵,,, ∴四边形为矩形. ∵是角平分线, ∴, ∴, ∴矩形为正方形, ∴,. ∴. (2)如图,过点作于点,于点, ∵平分,, ∴四边形为正方形, 由(1)得:, 在和中, , ∴, ∴, ∴. (3), , ∴. ∵,, ∴, ∴, ∴, 长度为. 【点睛】 考核知识点:矩形,正方形判定和性质.纯熟运用特殊四边形性质和判定是关键. 9.菱形ABCD中、∠BAD=120°,点O为射线CA 上动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F. (1)如图①,点O与点A重叠时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间数量关系; (2)如图②,点O在CA延长线上,且OA=AC,E,F分别在线段BC延长线和线段CD延长线上,请写出CE,CF,CA三条线段之间数量关系,并阐明理由; (3)点O在线段AC上,若AB=6,BO=2,当CF=1时,请直接写出BE长. 【答案】(1)CA=CE+CF.(2)CF-CE=AC.(3)BE值为3或5或1. 【解析】 【分析】 (1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可处理问题; (2)结论:CF-CE=AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可处理问题; (3)分四种情形画出图形分别求解即可处理问题. 【详解】 (1)如图①中,结论:CA=CE+CF. 理由:∵四边形ABCD是菱形,∠BAD=120° ∴AB=AD=DC=BC,∠BAC=∠DAC=60° ∴△ABC,△ACD都是等边三角形, ∵∠DAC=∠EAF=60°, ∴∠DAF=∠CAE, ∵CA=AD,∠D=∠ACE=60°, ∴△ADF≌△ACE(SAS), ∴DF=CE, ∴CE+CF=CF+DF=CD=AC, ∴CA=CE+CF. (2)结论:CF-CE=AC. 理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形. ∵∠GOC=∠FOE=60°, ∴∠FOG=∠EOC, ∵OG=OC,∠OGF=∠ACE=120°, ∴△FOG≌△EOC(ASA), ∴CE=FG, ∵OC=OG,CA=CD, ∴OA=DG, ∴CF-EC=CF-FG=CG=CD+DG=AC+AC=AC, (3)作BH⊥AC于H.∵AB=6,AH=CH=3, ∴BH=3, 如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时. ∵OB=2, ∴OH==1, ∴OC=3+1=4, 由(1)可知:CO=CE+CF, ∵OC=4,CF=1, ∴CE=3, ∴BE=6-3=3. 如图③-2中,当点O在线段AH上,点F在线段DC延长线上,点E在线段BC上时. 由(2)可知:CE-CF=OC, ∴CE=4+1=5, ∴BE=1. 如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时. 同法可证:OC=CE+CF, ∵OC=CH-OH=3-1=2,CF=1, ∴CE=1, ∴BE=6-1=5. 如图③-4中,当点O在线段CH上,点F在线段DC延长线上,点E在线段BC上时. 同法可知:CE-CF=OC, ∴CE=2+1=3, ∴BE=3, 综上所述,满足条件BE值为3或5或1. 【点睛】 本题属于四边形综合题,考察了全等三角形判定和性质,等边三角形性质,解题关键是学会添加常用辅助线,构造全等三角形处理问题,学会用分类讨论思想思考问题,属于中考压轴题. 10.如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC,且EF=EC. (1)求证:△AEF≌△DCE. (2)若DE=4cm,矩形ABCD周长为32cm,求AE长. 【答案】(1)证明见解析;(2)6cm. 【解析】 分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再运用AAS即可求证△AEF≌△DCE. (2)运用全等三角形性质,对应边相等,再根据矩形ABCD周长为32cm,即可求得AE长. 详解:(1)证明:∵EF⊥CE, ∴∠FEC=90°, ∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°, ∴∠AEF=∠ECD. 在Rt△AEF和Rt△DEC中, ∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC. ∴△AEF≌△DCE. (2)解:∵△AEF≌△DCE. AE=CD. AD=AE+4. ∵矩形ABCD周长为32cm, ∴2(AE+AE+4)=32. 解得,AE=6(cm). 答:AE长为6cm. 点睛:此题重要考察学生对全等三角形判定与性质和矩形性质等知识点理解和掌握,难易程度适中,是一道很经典题目. 11.如图1,在正方形ABCD中,点E,F分别是边BC,AB上点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC. (1)请判断:FG与CE关系是___; (2)如图2,若点E,F分别是边CB,BA延长线上点,其他条件不变,(1)中结论与否仍然成立?请作出判断并予以证明; (3)如图3,若点E,F分别是边BC,AB延长线上点,其他条件不变,(1)中结论与否仍然成立?请直接写出你判断. 【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立. 【解析】 试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE; (2)构造辅助线后证明△HGE≌△CED,运用对应边相等求证四边形GHBF是矩形后,运用等量代换即可求出FG=C,FG∥CE; (3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形. 试题解析:解:(1)FG=CE,FG∥CE; (2)过点G作GH⊥CB延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC; (3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE. 12.在中,,BD为AC边上中线,过点C作于点E,过点A作BD平行线,交CE延长线于点F,在AF延长线上截取,连接BG,DF. 求证:; 求证:四边形BDFG为菱形; 若,,求四边形BDFG周长. 【答案】(1)证明见解析(2)证明见解析(3)8 【解析】 【分析】 运用平行线性质得到,再运用直角三角形斜边上中线等于斜边二分之一即可得证, 运用平行四边形判定定理判定四边形BDFG为平行四边形,再运用得结论即可得证, 设,则,运用菱形性质和勾股定理得到CF、AF和AC之间关系,解出x即可. 【详解】 证明:,, , 又为AC中点, , 又, , 证明:,, 四边形BDFG为平行四边形, 又, 四边形BDFG为菱形, 解:设,则,, 在中,, 解得:,舍去, , 菱形BDFG周长为8. 【点睛】 本题考察了菱形判定与性质直角三角形斜边上中线,勾股定理等知识,对掌握这些定义性质及判定并结合图形作答是处理本题关键. 13.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上点F处,过点F作FG∥CD,交AE于点G,连接DG. (1)求证:四边形DEFG为菱形; (2)若CD=8,CF=4,求值. 【答案】(1)证明见试题解析;(2). 【解析】 试题分析:(1)由折叠性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形; (2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出值. 试题解析:(1)由折叠性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形; (2)设DE=x,根据折叠性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=. 考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形判定与性质;4.矩形性质;5.综合题. 14.如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP平分线上一点,若∠AMN=60°,求证:AM=MN. (2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP平分线上一点,若∠AMN=90°,则AM=MN与否成立?若成立,请证明;若不成立,阐明理由. (3)若将(2)中“正方形ABCD”改为“正n边形A1A2…An“,其他条件不变,请你猜想:当∠An﹣2MN=_____°时,结论An﹣2M=MN仍然成立.(不规定证明) 【答案】 【解析】 分析:(1)要证明AM=MN,可证AM与MN所在三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,运用ASA即可证明△AEM≌△MCN,然后根据全等三角形对应边成比例得出AM=MN. (2)同(1),要证明AM=MN,可证AM与MN所在三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,运用ASA即可证明△AEM≌△MCN,然后根据全等三角形对应边成比例得出AM=MN. 详(1)证明:在边AB上截取AE=MC,连接ME. 在正△ABC中,∠B=∠BCA=60°,AB=BC. ∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE, BE=AB-AE=BC-MC=BM, ∴∠BEM=60°,∴∠AEM=120°. ∵N是∠ACP平分线上一点, ∴∠ACN=60°,∴∠MCN=120°. 在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN, ∴△AEM≌△MCN(ASA), ∴AM=MN. (2)解:结论成立; 理由:在边AB上截取AE=MC,连接ME. ∵正方形ABCD中,∠B=∠BCD=90°,AB=BC. ∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE, BE=AB-AE=BC-MC=BM, ∴∠BEM=45°,∴∠AEM=135°. ∵N是∠DCP平分线上一点, ∴∠NCP=45°,∴∠MCN=135°. 在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN, ∴△AEM≌△MCN(ASA), ∴AM=MN. (3)由(1)(2)可知当∠An-2MN等于n边形内角时,结论An-2M=MN仍然成立; 即∠An-2MN=时,结论An-2M=MN仍然成立; 故答案为[]. 点睛:本题综合考察了正方形、等边三角形性质及全等三角形判定,同步考察了学生归纳能力及分析、处理问题能力.难度较大. 15.(本题14分)小明在学习平行线有关知识时总结了如下结论:端点分别在两条平行线上所有线段中,垂直于平行线线段最短. 小明应用这个结论进行了下列探索活动和问题处理. 问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上一动点,以PB,PA为边构造 □APBQ,求对角线PQ最小值及PQ最小时值. (1)在处理这个问题时,小明构造出了如图2辅助线,则PQ最小值为 ,当PQ最小时 = _____ __; (2)小明对问题1做了简单变式思考.如图3,P为AB边上一动点,延长PA到点E,使AE=nPA(n 为不小于0常数).以PE,PC为边作□PCQE,试求对角线PQ长最小值,并求PQ最小时值; 问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3. (1)如图4,若为上任意一点,以,为边作□.试求对角线长最小值和PQ最小时值. (2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长最小值和PQ最小时值. 【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ最小值为.. 【解析】 试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求值.(2)由题可知:当QP⊥AC时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,运用面积可求出CD=,然后可求出AD=, 由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,因此AP=.因此=.问题2:(1)设对角线与相交于点.Rt≌Rt.因此AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.因此.(2)根据题意画出图形,当 AB时,长最小,PQ最小值为.. 试题解析:问题1:(1)3,; (2)过点C作CD⊥AB于点D. 由题意可知当PQ⊥AB时,PQ最短.因此此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.由于∠BCA=90°,AC=4, BC=3,因此AB=5.因此CD=.因此PQ=. 在Rt△ACD中AC=4,CD=,因此AD=. 由于AE=nPA,因此PE==CQ=PD=AD-AP=. 因此AP=.因此=. 问题2: (1)如图2,设对角线与相交于点. 因此G是DC中点, 作QHBC,交BC延长线于H, 由于AD//BC,因此. 因此. 又,因此Rt≌Rt.因此AD=HC,QH=AP. 由图知,当 AB时,长最小,即=CH=4. 易得四边形BPQH为矩形,因此QH=BP=AP.因此. (若学生有能力从梯形中位线角度考虑,若对即可评分.但讲评时不作规定) (2)PQ最小值为.. 考点:1.直角三角形性质;2.全等三角形判定与性质;3.平行四边形性质;4矩形判定与性质.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2025年九年级数学平行四边形的专项培优易错难题练习题及详细答案.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/13010807.html