分享
分销 收藏 举报 申诉 / 21
播放页_导航下方通栏广告

类型2025届内蒙古乌拉特前旗第四中学初三模拟试题(一)数学试题含解析.doc

  • 上传人:y****6
  • 文档编号:12263620
  • 上传时间:2025-09-29
  • 格式:DOC
  • 页数:21
  • 大小:891KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2025 内蒙古 乌拉特前旗 第四 中学 初三 模拟 试题 数学试题 解析
    资源描述:
    2025届内蒙古乌拉特前旗第四中学初三模拟试题(一)数学试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(共10小题,每小题3分,共30分) 1.反比例函数是y=的图象在(  ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 2.下列关于事件发生可能性的表述,正确的是(  ) A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件 B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖 C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品 D.掷两枚硬币,朝上的一面是一正面一反面的概率为 3.已知一个多边形的内角和是外角和的3倍,则这个多边形是(  ) A.五边形 B.六边形 C.七边形 D.八边形 4.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,(  ) A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2 C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S2 5.绿豆在相同条件下的发芽试验,结果如下表所示: 每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 96 282 382 570 948 1904 2850 发芽的频率 0.960 0.940 0.955 0.950 0.948 0.952 0.950 下面有三个推断: ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955; ②根据上表,估计绿豆发芽的概率是0.95; ③若n为4000,估计绿豆发芽的粒数大约为3800粒. 其中推断合理的是(  ) A.① B.①② C.①③ D.②③ 6.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(  ) A.10cm B.30cm C.45cm D.300cm 7.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=(  ) A.15 B.13 C.12 D.5 8.下列计算正确的是(  ) A.(a2)3=a6 B.a2•a3=a6 C.a3+a4=a7 D.(ab)3=ab3 9.下列判断正确的是(  ) A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上 B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨 C.“篮球队员在罚球线上投篮一次,投中”为随机事件 D.“a是实数,|a|≥0”是不可能事件 10.已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  ) A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y2 二、填空题(本大题共6个小题,每小题3分,共18分) 11.正六边形的每个内角等于______________°. 12.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是 . 13.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) 14.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为 . 15.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____. 16.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 区域的可能性最大(填A或B或C). 三、解答题(共8题,共72分) 17.(8分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 B m n 0.01 设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB. (1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n= ; (2)写出yA与x之间的函数关系式; (3)选择哪种方式上网学习合算,为什么. 18.(8分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B. (1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k; (2)若OA=3BC,求k的值. 19.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围. 20.(8分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2. (1)求反比例函数的解析式. (2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标. 21.(8分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜. (1)请您列表或画树状图列举出所有可能出现的结果; (2)请你判断这个游戏对他们是否公平并说明理由. 22.(10分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3). (1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标; (2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点 B1的坐标; (3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧; 请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标. 23.(12分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F. (1)当AE平分∠BAC时,求证:∠BEF=∠BFE; (2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长. 24.(1)问题发现: 如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为   ; (2)深入探究: 如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由; (3)拓展延伸: 如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长. 参考答案 一、选择题(共10小题,每小题3分,共30分) 1、B 【解析】 解:∵反比例函数是y=中,k=2>0, ∴此函数图象的两个分支分别位于一、三象限. 故选B. 2、C 【解析】 根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可. 【详解】 解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误. B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误. C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确. D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误. 故选:C. 考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比. 3、D 【解析】 根据多边形的外角和是360°,以及多边形的内角和定理即可求解. 【详解】 设多边形的边数是n,则 (n−2)⋅180=3×360, 解得:n=8. 故选D. 此题考查多边形内角与外角,解题关键在于掌握其定理. 4、D 【解析】 根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答. 【详解】 ∵如图,在△ABC中,DE∥BC, ∴△ADE∽△ABC, ∴, ∴若1AD>AB,即时,, 此时3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能确定3S1与1S1的大小, 故选项A不符合题意,选项B不符合题意. 若1AD<AB,即时,, 此时3S1<S1+S△BDE<1S1, 故选项C不符合题意,选项D符合题意. 故选D. 考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形. 5、D 【解析】 ①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确. 【详解】 ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误; ②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确; ③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确. 故选D. 本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比. 6、A 【解析】 根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。 【详解】 直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形 假设每个圆锥容器的地面半径为 解得 故答案选A. 本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。 7、A 【解析】 过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值. 【详解】 过点A作AM⊥x轴于点M,如图所示. 设OA=a=OB,则, 在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=, ∴AM=OA•sin∠AOB=a,OM=a, ∴点A的坐标为(a,a). ∵四边形OACB是菱形,S△AOF=, ∴OB×AM=, 即×a×a=39, 解得a=±,而a>0, ∴a=,即A(,6), ∵点A在反比例函数y=的图象上, ∴k=×6=1. 故选A. 【解答】 解: 【点评】 本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA. 8、A 【解析】 分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案. 详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A. 点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键. 9、C 【解析】 直接利用概率的意义以及随机事件的定义分别分析得出答案. 【详解】 A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误; B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误; C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确; D、“a是实数,|a|≥0”是必然事件,故此选项错误. 故选C. 此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键. 10、D 【解析】 试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2; 故选D. 考点:反比例函数的性质. 二、填空题(本大题共6个小题,每小题3分,共18分) 11、120 【解析】 试题解析:六边形的内角和为:(6-2)×180°=720°, ∴正六边形的每个内角为:=120°. 考点:多边形的内角与外角. 12、n1+n+1. 【解析】 试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成, 分别为: 第一个图有:1+1+1个, 第二个图有:4+1+1个, 第三个图有:9+3+1个, … 第n个为n1+n+1. 考点:规律型:图形的变化类. 13、1. 【解析】 试题解析:在RtΔABC中,sin34°= ∴AC=AB×sin34°=500×0.56=1米. 故答案为1. 14、. 【解析】 试题分析:连接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=,PC=2OC=2,即可得PB=PO﹣OB=. 考点:切线的性质;锐角三角函数. 15、 【解析】 过点作于,根据三角形的性质及三角形内角和定理可计算 再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得. 【详解】 如图,过点作于, ∵, ∴. ∵将绕点逆时针旋转,使点落在点处,此时点落在点处, ∴ ∵ ∴ 在中,∵ ∴ ∴, 在中,∵, ∴, ∴. 故答案为. 本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质. 16、A 【解析】 试题分析:由题意得:SA>SB>SC, 故落在A区域的可能性大 考点: 几何概率 三、解答题(共8题,共72分) 17、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算. 【解析】 (1)由图象知:m=10,n=50; (2)根据已知条件即可求得yA与x之间的函数关系式为:当x≤25时,yA=7;当x>25时,yA=7+(x﹣25)×0.01; (3)先求出yB与x之间函数关系为:当x≤50时,yB=10;当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可. 【详解】 解:(1)由图象知:m=10,n=50; 故答案为:10;50; (2)yA与x之间的函数关系式为: 当x≤25时,yA=7, 当x>25时,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8, ∴yA=; (3)∵yB与x之间函数关系为: 当x≤50时,yB=10, 当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20, 当0<x≤25时,yA=7,yB=50, ∴yA<yB,∴选择A方式上网学习合算, 当25<x≤50时.yA=yB,即0.6x﹣8=10,解得;x=30, ∴当25<x<30时,yA<yB,选择A方式上网学习合算, 当x=30时,yA=yB,选择哪种方式上网学习都行, 当30<x≤50,yA>yB,选择B方式上网学习合算, 当x>50时,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴选择B方式上网学习合算, 综上所述:当0<x<30时,yA<yB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当x>30时,yA>yB,选择B方式上网学习合算. 本题考查一次函数的应用. 18、(1)k=b2+4b;(2). 【解析】 试题分析:(1)分别求出点B的坐标,即可解答. (2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x 试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C, ∴平移后直线的解析式为y=+4, ∵点B在直线y=+4上, ∴B(b,b+4), ∵点B在双曲线y=上, ∴B(b,), 令b+4= 得 (2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x), ∵OA=3BC,BC∥OA,CF∥x轴, ∴CF=OD, ∵点A、B在双曲线y=上, ∴3b•b=,解得b=1, ∴k=3×1××1=. 考点:反比例函数综合题. 19、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1. 【解析】 【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式; (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论. 【详解】(1)∵点A在直线y1=1x﹣1上, ∴设A(x,1x﹣1), 过A作AC⊥OB于C, ∵AB⊥OA,且OA=AB, ∴OC=BC, ∴AC=OB=OC, ∴x=1x﹣1, x=1, ∴A(1,1), ∴k=1×1=4, ∴; (1)∵,解得:,, ∴C(﹣1,﹣4), 由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1. 【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大. 20、(1);(2)P(0,6) 【解析】 试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标. 试题解析: 令一次函数中,则, 解得:,即点A的坐标为(-4,2). ∵点A(-4,2)在反比例函数的图象上, ∴k=-4×2=-8, ∴反比例函数的表达式为. 连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值. 设平移后直线于x轴交于点F,则F(6,0) 设平移后的直线解析式为, 将F(6,0)代入得:b=3 ∴直线CF解析式: 令3=,解得:, ∴C(-2,4) ∵A、C两点坐标分别为A(-4,2)、C(-2,4) ∴直线AC的表达式为, 此时,P点坐标为P(0,6). 点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键. 21、(1)36(2)不公平 【解析】 (1)根据题意列表即可; (2)根据根据表格可以求得得分情况,比较其大小,即可得出结论. 【详解】 (1)列表得: (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) ∴一共有36种等可能的结果, (2)这个游戏对他们不公平, 理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等, 而P(两次掷的骰子的点数相同) P(两次掷的骰子的点数的和是6)= ∴不公平. 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等 就公平,否则就不公平. 22、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0). 【解析】 (1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求. 【详解】 解:(1)如图所示,点B的坐标为(﹣4,1); (2)如图,△A1B1C1即为所求,点B1的坐标(1,4); (3)如图,△A2B2C2即为所求; (4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0). 本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义. 23、(1)证明见解析;(1)2 【解析】 分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解; (1)根据中点定义求出BC,利用勾股定理列式求出AB即可. 详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1. ∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD. ∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE; (1)∵BE=1,∴BC=4,由勾股定理得:AB===2. 点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键. 24、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3); 【解析】 (1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN. (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论; (3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【详解】 (1)NC∥AB,理由如下: ∵△ABC与△MN是等边三角形, ∴AB=AC,AM=AN,∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, 在△ABM与△ACN中, , ∴△ABM≌△ACN(SAS), ∴∠B=∠ACN=60°, ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°, ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°, ∴CN∥AB; (2)∠ABC=∠ACN,理由如下: ∵=1且∠ABC=∠AMN, ∴△ABC~△AMN ∴, ∵AB=BC, ∴∠BAC=(180°﹣∠ABC), ∵AM=MN ∴∠MAN=(180°﹣∠AMN), ∵∠ABC=∠AMN, ∴∠BAC=∠MAN, ∴∠BAM=∠CAN, ∴△ABM~△ACN, ∴∠ABC=∠ACN; (3)如图3,连接AB,AN, ∵四边形ADBC,AMEF为正方形, ∴∠ABC=∠BAC=45°,∠MAN=45°, ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC 即∠BAM=∠CAN, ∵, ∴, ∴△ABM~△ACN ∴, ∴=cos45°=, ∴, ∴BM=2, ∴CM=BC﹣BM=8, 在Rt△AMC, AM=, ∴EF=AM=2. 本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2025届内蒙古乌拉特前旗第四中学初三模拟试题(一)数学试题含解析.doc
    链接地址:https://www.zixin.com.cn/doc/12263620.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork