2025年山东省东明县重点达标名校初三四模数学试题试卷含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2025 山东省 东明县 重点 达标 名校 初三 数学试题 试卷 解析
- 资源描述:
-
2025年山东省东明县重点达标名校初三四模数学试题试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.下列方程中是一元二次方程的是( ) A. B. C. D. 2.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( ) A.4,30° B.2,60° C.1,30° D.3,60° 3.下列说法正确的是( ) A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨 B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上 C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖 D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近 4.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( ) A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107 5.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为( ) A.π B.π C.6﹣π D.2﹣π 6.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( ) A. B.5 C.6 D. 7.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是( ) A.100° B.80° C.60° D.50° 8.不等式组的解集在数轴上表示正确的是( ) A. B. C. D. 9.如图,在已知的△ ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是( ) A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB 10.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( ) A.3a+2b B.3a+4b C.6a+2b D.6a+4b 二、填空题(共7小题,每小题3分,满分21分) 11.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____. 12.因式分解:______. 13.若一组数据1,2,3,的平均数是2,则的值为______. 14.将161000用科学记数法表示为1.61×10n,则n的值为________. 15.在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______. 16.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________. 17.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米. 三、解答题(共7小题,满分69分) 18.(10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元. (1)甲、乙两种材料每千克分别是多少元? (2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案? (3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案. 19.(5分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元. (1)甲种商品与乙种商品的销售单价各多少元? (2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件? 20.(8分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象. (1)若点A的坐标为(1,0). ①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大; ②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标; (2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围. 21.(10分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点 求m的值及C点坐标; 在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由 为抛物线上一点,它关于直线BC的对称点为Q 当四边形PBQC为菱形时,求点P的坐标; 点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由. 22.(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值. 23.(12分)先化简,再求值:,其中,. 24.(14分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为. ()请直接写出袋子中白球的个数. ()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答) 参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解析】 找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可. 【详解】 解:A、当a=0时,不是一元二次方程,故本选项错误; B、是分式方程,故本选项错误; C、化简得:是一元二次方程,故本选项正确; D、是二元二次方程,故本选项错误; 故选:C. 本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键. 2、B 【解析】 试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合, ∴∠A′B′C=60°,AB=A′B′=A′C=4, ∴△A′B′C是等边三角形, ∴B′C=4,∠B′A′C=60°, ∴BB′=6﹣4=2, ∴平移的距离和旋转角的度数分别为:2,60° 故选B. 考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定 3、D 【解析】 根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案. 【详解】 解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意; B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意; C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意; D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意; 故选D 本题考查了概率的意义,正确理解概率的含义是解决本题的关键. 4、C 【解析】 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【详解】 7490000=7.49×106. 故选C. 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 5、C 【解析】 根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积. 【详解】 由题意可得, BC=CD=4,∠DCB=90°, 连接OE,则OE=BC, ∴OE∥DC, ∴∠EOB=∠DCB=90°, ∴阴影部分面积为: = =6-π, 故选C. 本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 6、B 【解析】 易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题. 【详解】 若点E在BC上时,如图 ∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°, ∴∠CFE=∠AEB, ∵在△CFE和△BEA中, , ∴△CFE∽△BEA, 由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即, ∴, 当y=时,代入方程式解得:x1=(舍去),x2=, ∴BE=CE=1,∴BC=2,AB=, ∴矩形ABCD的面积为2×=5; 故选B. 本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键. 7、B 【解析】 试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°. 故选:B 8、A 【解析】 分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可. 详解: 由①得,x≤1, 由②得,x>-1, 故此不等式组的解集为:-1<x≤1. 在数轴上表示为: 故选A. 点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 9、B 【解析】 作弧后可知MN⊥CB,且CD=DB. 【详解】 由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB. 了解中垂线的作图规则是解题的关键. 10、A 【解析】 根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可. 【详解】 依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b. 故这块矩形较长的边长为3a+2b.故选A. 本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 二、填空题(共7小题,每小题3分,满分21分) 11、2或2. 【解析】 本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长. 【详解】 解: 当点在线段的延长线上时,如图3所示. 过点作于, 是正方形的对角线, , , 在中,由勾股定理,得: , 在和中,, , , 当点在线段上时,如图4所示. 过作于. 是正方形的对角线, , 在中,由勾股定理,得: 在和中,, , , 故答案为或. 本题主要考查了勾股定理和三角形全等的证明. 12、 【解析】 先提取公因式x,再对余下的多项式利用完全平方公式继续分解. 【详解】 xy1+1xy+x, =x(y1+1y+1), =x(y+1)1. 故答案为:x(y+1)1. 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 13、1 【解析】 根据这组数据的平均数是1和平均数的计算公式列式计算即可. 【详解】 ∵数据1,1,3,的平均数是1, ∴, 解得:. 故答案为:1. 本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键. 14、5 【解析】 【科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【详解】 ∵161000=1.61×105. ∴n=5. 故答案为5. 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 15、 【解析】 设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程. 【详解】 设羊价为x钱, 根据题意可得方程:, 故答案为:. 本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程. 16、2 【解析】 设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可. 【详解】 设EF=x, ∵四边形ABCD是正方形, ∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°, ∴BD=AB=4+4,EF=BF=x, ∴BE=x, ∵∠BAE=22.5°, ∴∠DAE=90°-22.5°=67.5°, ∴∠AED=180°-45°-67.5°=67.5°, ∴∠AED=∠DAE, ∴AD=ED, ∴BD=BE+ED=x+4+2=4+4, 解得:x=2, 即EF=2. 17、5200 【解析】 设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得: 解得 所以甲到学校距离为2400米,乙到学校距离为6300米, 所以甲的家和乙的家相距8700米. 故答案是:8700. 【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息. 三、解答题(共7小题,满分69分) 18、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低. 【解析】 试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案. 试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元, 依题意得:解得: 答:甲种材料每千克25元, 乙种材料每千克35元. (2)生产B产品a件,生产A产品(60-a)件. 依题意得: 解得: ∵a的值为非负整数 ∴a=39、40、41、42 ∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件 (3)、答:生产A产品21件,B产品39件成本最低. 设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500 ∵k=55>0 ∴W随a增大而增大∴当a=39时,总成本最低. 考点:二元一次方程组的应用、不等式组的应用、一次函数的应用. 19、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件. 【解析】 (1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可; (1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可. 【详解】 (1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有: ,解得. 答:甲种商品的销售单价900元,乙种商品的销售单价600元; (1)设销售甲种商品a万件,依题意有: 900a+600(8﹣a)≥5400,解得:a≥1. 答:至少销售甲种商品1万件. 本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系. 20、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大. 【解析】 试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值; ②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标; (2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值. 试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得: (x﹣h)2﹣2=0,解得:h=3或h=﹣1, ∵点A在点B的左侧,∴h>0,∴h=3, ∴抛物线l的表达式为:y=(x﹣3)2﹣2, ∴抛物线的对称轴是:直线x=3, 由对称性得:B(5,0), 由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大; ②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE, 由对称性得:DF=PD, ∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD, ∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD, 设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]), ∵点F、Q在抛物线l上, ∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2, ∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2], 解得:a=或a=0(舍),∴P(,); (2)当y=0时,(x﹣h)2﹣2=0, 解得:x=h+2或h﹣2, ∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0), 如图3,作抛物线的对称轴交抛物线于点C, 分两种情况: ①由图象可知:图象f在AC段时,函数f的值随x的增大而增大, 则,∴3≤h≤4, ②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大, 即:h+2≤2,h≤0, 综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大. 考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组. 21、,;存在,;或;当时,. 【解析】 (1)用待定系数法求出抛物线解析式; (2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标; (3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解; ②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值. 【详解】 解:(1)将B(4,0)代入,解得,m=4, ∴二次函数解析式为,令x=0,得y=4, ∴C(0,4); (2)存在,理由:∵B(4,0),C(0,4), ∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大, ∴, ∴, ∴△=1﹣4b=0,∴b=4, ∴,∴M(2,6); (3)①如图,∵点P在抛物线上, ∴设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4), ∴线段BC的垂直平分线的解析式为y=x, ∴m=, ∴m=, ∴P(,)或P(,); ②如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线, ∵点D在直线BC上,∴D(t,﹣t+4), ∵PD=﹣(﹣t+4)=,BE+CF=4, ∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD= ∵0<t<4, ∴当t=2时,S四边形PBQC最大=1. 考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题. 22、,2 【解析】 试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2. 试题解析:原式=·= 当a=0时,原式==2. 考点:分式的化简求值. 23、9 【解析】 根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题. 【详解】 当,时, 原式 本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法. 24、(1)袋子中白球有2个;(2). 【解析】 试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案. 试题解析:(1)设袋子中白球有x个, 根据题意得:=, 解得:x=2, 经检验,x=2是原分式方程的解, ∴袋子中白球有2个; (2)画树状图得: ∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况, ∴两次都摸到相同颜色的小球的概率为:. 考点:列表法与树状图法;概率公式.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2025年山东省东明县重点达标名校初三四模数学试题试卷含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12263617.html