1.3.1二项式定理.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.3 二项式 定理
- 资源描述:
-
1. 3.1二项式定理 教学目标: 知识与技能:进一步掌握二项式定理和二项展开式的通项公式 过程与方法:能解决二项展开式有关的简单问题 情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。 教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课 教 具:多媒体、实物投影仪 第一课时 一、复习引入: ⑴; ⑵ ⑶的各项都是次式, 即展开式应有下面形式的各项:,,,,, 展开式各项的系数:上面个括号中,每个都不取的情况有种,即种,的系数是;恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,有都取的情况有种,的系数是, ∴. 二、讲解新课: 二项式定理: ⑴的展开式的各项都是次式,即展开式应有下面形式的各项: ,,…,,…,, ⑵展开式各项的系数: 每个都不取的情况有种,即种,的系数是; 恰有个取的情况有种,的系数是,……, 恰有个取的情况有种,的系数是,……, 有都取的情况有种,的系数是, ∴, 这个公式所表示的定理叫二项式定理,右边的多项式叫的二项展开式,⑶它有项,各项的系数叫二项式系数, ⑷叫二项展开式的通项,用表示,即通项. ⑸二项式定理中,设,则 三、讲解范例: 例1.展开. 解一: . 解二: . 例2.展开. 解: . 第二课时 例3.求的展开式中的倒数第项 解:的展开式中共项,它的倒数第项是第项, . 例4.求(1),(2)的展开式中的第项. 解:(1), (2). 点评:,的展开后结果相同,但展开式中的第项不相同 例5.(1)求的展开式常数项; (2)求的展开式的中间两项 解:∵, ∴(1)当时展开式是常数项,即常数项为; (2)的展开式共项,它的中间两项分别是第项、第项, , 第三课时 例6.(1)求的展开式的第4项的系数; (2)求的展开式中的系数及二项式系数 解:的展开式的第四项是, ∴的展开式的第四项的系数是. (2)∵的展开式的通项是, ∴,, ∴的系数,的二项式系数. 例7.求的展开式中的系数 分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开 解:(法一) , 显然,上式中只有第四项中含的项, ∴展开式中含的项的系数是 (法二): ∴展开式中含的项的系数是. 例8.已知 的展开式中含项的系数为,求展开式中含项的系数最小值 分析:展开式中含项的系数是关于的关系式,由展开式中含项的系数为,可得,从而转化为关于或的二次函数求解 解:展开式中含的项为 ∴,即, 展开式中含的项的系数为 , ∵, ∴, ∴ ,∴当时,取最小值,但, ∴ 时,即项的系数最小,最小值为,此时. 第四课时 例9.已知的展开式中,前三项系数的绝对值依次成等差数列, (1)证明展开式中没有常数项;(2)求展开式中所有的有理项 解:由题意:,即,∴舍去) ∴ ①若是常数项,则,即, ∵,这不可能,∴展开式中没有常数项; ②若是有理项,当且仅当为整数, ∴,∴ , 即 展开式中有三项有理项,分别是:,, 例10.求的近似值,使误差小于. 解:, 展开式中第三项为,小于,以后各项的绝对值更小,可忽略不计, ∴, 一般地当较小时 四、课堂练习: 1.求的展开式的第3项. 2.求的展开式的第3项. 3.写出的展开式的第r+1项. 4.求的展开式的第4项的二项式系数,并求第4项的系数. 5.用二项式定理展开: (1);(2). 6.化简:(1);(2) 7.展开式中的第项为,求. 8.求展开式的中间项 答案:1. 2. 3. 4.展开式的第4项的二项式系数,第4项的系数 5. (1); (2). 6. (1); (2) 7. 展开式中的第项为 8. 展开式的中间项为 五、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点 六、课后作业: P36 习题1.3A组1. 2. 3.4 七、板书设计(略) 八、教学反思: (a+b) n = 这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b)n的 ,其中(r=0,1,2,……,n)叫做 , 叫做二项展开式的通项,它是展开式的第 项,展开式共有 个项. 掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。 培养归纳猜想,抽象概括,演绎证明等理性思维能力。教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体,教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。 二项式定理是指 这样一个展开式的公式.它是(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3…等等展开式的一般形式,在初等数学中它各章节的联系似乎不太多,而在高等数学中它是许多重要公式的共同基础,根据二项式定理的展开,才求得y=xn的导数公式y′=nxn-1,同时=e≈2.718281…也正是由二项式定理的展开规律所确定,而e在高等数学中的地位更是举足轻重,概率中的正态分布,复变函数中的欧拉公式eiθ=cosθ+isinθ,微分方程中二阶变系数方程及高阶常系数方程的解由e的指数形式来表达.且直接由e的定义建立的y=lnx的导数公式y=与积分公式=dxlnx+c是分析学中用的最多的公式之一.而由y=xn的各阶导数为基础建立的泰勒公式;f(x)=f(x0)+(x-x0)2+…(x-x0)n+(θ∈(0,1))以及由此建立的幂级数理论,更是广泛深入到高等数学的各个分支中. 怎样使二项式定理的教学生动有趣 正因为二项式定理在初等数学中与其他内容联系较少,所以教材上教法就显得呆板,单调,课本上先给出一个(a+b)4用组合知识来求展开式的系数的例子.然后推广到一般形式,再用数学归纳法证明,因为证明写得很长,上课时的板书几乎占了整个黑板,所以课必然上得累赘,学生必然感到被动.那么多的算式学生看都不及细看,记也感到吃力,又怎能发挥主体作用? 怎样才能使得在这节课上学生获得主动?采用课前预习;自学辅导;还是学生讨论,或读,议、讲,练,或目标教学,还是设置发现情境?看来这些办法遇到真正困难时都会无能为力,因为这些方法都无法改变算式的冗长,证法的呆板,课堂上的新情境与学生的认知结构中的图式不协调的事实. 而MM教育方式即数学方法论的教育方式却能根据习题理论注意到充分利用数学方法与数学技术把所要证明或计算的形式变换得十分简洁,心理学家皮亚杰一再强调“认识起因于主各体之间的相互作用”[1]只有客体的形式与学生主体认知结构中的图式取得某种一致的时候,才能完成认识的主动建构,也就是学生获得真正的理解. MM教育方式遵循“兴趣与能力的同步发展规律”和“教,学,研互相促进的规律”[2]在教学中追求简易,重视直观,并巧妙地在应用抽象使问题变得十分有趣,学生学得生动主动,充分发挥其课堂上的主体作用.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




1.3.1二项式定理.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/10690014.html