分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型高数符号大全.doc

  • 上传人:天****
  • 文档编号:11227869
  • 上传时间:2025-07-08
  • 格式:DOC
  • 页数:4
  • 大小:106.02KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    符号 大全
    资源描述:
    高等数学常用符号大全及符号的含义 符号 含义 i   -1的平方根 f(x)   函数f在自变量x处的值 sin(x)   在自变量x处的正弦函数值 exp(x)   在自变量x处的指数函数值,常被写作ex a^x   a的x次方;有理数x由反函数定义 ln x   exp x 的反函数 ax   同 a^x logba   以b为底a的对数; blogba = a cos x   在自变量x处余弦函数的值 tan x   其值等于 sin x/cos x cot x   余切函数的值或 cos x/sin x sec x   正割含数的值,其值等于 1/cos x csc x   余割函数的值,其值等于 1/sin x asin x   y,正弦函数反函数在x处的值,即 x = sin y acos x   y,余弦函数反函数在x处的值,即 x = cos y atan x   y,正切函数反函数在x处的值,即 x = tan y acot x   y,余切函数反函数在x处的值,即 x = cot y asec x   y,正割函数反函数在x处的值,即 x = sec y acsc x   y,余割函数反函数在x处的值,即 x = csc y θ   角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时 i, j, k   分别表示x、y、z方向上的单位向量 (a, b, c)   以a、b、c为元素的向量 (a, b)   以a、b为元素的向量 (a, b)   a、b向量的点积 a•b   a、b向量的点积 (a•b)   a、b向量的点积 |v|   向量v的模 |x|   数x的绝对值 Σ 表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100 的和可以表示成:。这表示 1 + 2 + … + n M   表示一个矩阵或数列或其它 |v>   列向量,即元素被写成列或可被看成k×1阶矩阵的向量 <v|   被写成行或可被看成从1×k阶矩阵的向量 dx   变量x的一个无穷小变化,dy, dz, dr等类似 ds   长度的微小变化 ρ 变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离 r 变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离 |M|   矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积 ||M||   矩阵M的行列式的值,为一个面积、体积或超体积 det M   M的行列式 M-1   矩阵M的逆矩阵 v×w   向量v和w的向量积或叉积 θvw   向量v和w之间的夹角 A•B×C   标量三重积,以A、B、C为列的矩阵的行列式 uw   在向量w方向上的单位向量,即 w/|w| df   函数f的微小变化,足够小以至适合于所有相关函数的线性近似 df/dx   f关于x的导数,同时也是f的线性近似斜率 f '   函数f关于相应自变量的导数,自变量通常为x ∂f/∂x   y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df 与dq的比值。任何可能导致变量混淆的地方都应明确地表述 (∂f/∂x)|r,z   保持r和z不变时,f关于x的偏导数 grad f   元素分别为f关于x、y、z偏导数 [(∂f/∂x), (∂f/∂y), (∂f/∂z)] 或 (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k; 的向量场,称为f的梯度 ∇   向量算子(∂/∂x)i + (∂/∂x)j + (∂/∂x)k, 读作 "del" ∇f   f的梯度;它和 uw 的点积为f在w方向上的方向导数 ∇•w   向量场w的散度,为向量算子∇ 同向量 w的点积, 或 (∂wx /∂x) + (∂wy /∂y) + (∂wz/∂z) curl w   向量算子 ∇ 同向量 w 的叉积 ∇×w   w的旋度,其元素为[(∂fz /∂y) - (∂fy /∂z), (∂fx /∂z) - (∂fz /∂x), (∂fy /∂x) - (∂fx /∂y)] ∇•∇   拉普拉斯微分算子: (∂2/∂x2) + (∂/∂y2) + (∂/∂z2) f "(x)   f关于x的二阶导数,f '(x)的导数 d2f/dx2   f关于x的二阶导数 f(2)(x)   同样也是f关于x的二阶导数 f(k)(x)   f关于x的第k阶导数,f(k-1) (x)的导数 T 曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt| ds   沿曲线方向距离的导数 κ   曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds| N   dT/ds投影方向单位向量,垂直于T B   平面T和N的单位法向量,即曲率的平面 τ   曲线的扭率: |dB/ds| g   重力常数 F   力学中力的标准符号 k   弹簧的弹簧常数 pi   第i个物体的动量 H   物理系统的哈密尔敦函数,即位置和动量表示的能量 {Q, H}   Q, H的泊松括号 以一个关于x的函数的形式表达的f(x)的积分 函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积 L(d)   相等子区间大小为d,每个子区间左端点的值为 f的黎曼和 R(d)   相等子区间大小为d,每个子区间右端点的值为 f的黎曼和 M(d)   相等子区间大小为d,每个子区间上的最大值为 f的黎曼和 m(d)   相等子区间大小为d,每个子区间上的最小值为 f的黎曼和
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:高数符号大全.doc
    链接地址:https://www.zixin.com.cn/doc/11227869.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork