26.1.3二次函数y=a(x-h)2+k的图象和性质.ppt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 26.1 二次 函数 图象 性质
- 资源描述:
-
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,x,y,1,1,2,2,3,3,4,4,5,5,6,7,-1,-1,-2,-3,-4,-5,0,-2,二次函数,y,=,a,(,x-h,),2,+,k,的图像和性质,1,y,ax,2,a,0,a,0,图象,开口,对称性,顶点,增减性,复习二次函数,y=ax,2,的性质,开口,向上,开口,向下,|a|,越大,开口越小,关于,y,轴,(,或,x=0),对称,顶点坐标是原点(,0,,,0,),顶点是,最低点,顶点是,最高点,在对称轴,左侧递减,在对称轴,右侧递增,在对称轴,左侧递增,在对称轴,右侧递减,O,O,2,y,ax,2,+k,a0,a0,k0,k0,(0,k),在对称轴左侧,,y,随,x,的,增大,而,增大,在对称轴右侧,,y,随,x,的,增大,而,减小,3,y,a(x-,),2,a0,a0,h0,h0,(,0),4,抛物线,开口,方向,对称轴,顶点,最值,增减情况,y=,a,x,a0,向上,X=0,(,0,0),当,x=0,时,y,有最小值,0,x0,时,y,随,x,的增大而增大,a0,向下,X=0,(,0,0),当,x=0,时,y,有最大值,0,x0,时,y,随,x,的增大而减小,.,y=,a,x,+,c,a0,向上,X=0,(,0,c,),当,x=0,时,y,有最小值,c,x0,时,y,随,x,的增大而增大,a0,向下,X=0,(,0,c,),当,x=0,时,y,有最大值,c,x0,时,y,随,x,的增大而减小,.,y=,a,(x-,h,),a0,向上,X=h,(,h,0),当,x=h,时,y,有最小值,0,x0,时,y,随,x,的增大而增大,a0,向下,X=h,(,h,0),当,x=h,时,y,有最大值,0,x,h,时,y,随,x,的增大而减小,.,5,1.,填表,复习回顾,:,抛物线,开口方向,对称轴,顶点坐标,(0,0),(1,0),(-1,0),(0,0),(0,1),(0,-1),向下,向下,向下,向上,向上,向上,x=0,x=0,x=0,x=0,x=1,x=-1,6,O,x,y,1,2,3,4,5,1,2,3,4,5,5,4,3,2,1,5,4,3,2,1,(,0,3,),(,0,-3,),如何由,的图象得到,的图象。,2.,上下平移,、,3,3,1,2,-,-,=,x,y,3,3,1,2,+,-,=,x,y,7,O,x,y,1,2,3,4,5,1,2,3,4,5,5,4,3,2,1,5,4,3,2,1,x=-2,(-2,0),(2,0),x=2,如何由,的图象得到,的图象。,、,3.,左右平移,8,y=ax,2,y=a(x-h),2,y=ax,2,+k,y=ax,2,k0,k0,时,开口向上,;,当,a0),y=a(x-h),2,+k,(a0),(,h,,,k,),(,h,,,k,),直线,x=h,直线,x=h,向上,向下,当,x=h,时,最小值为,k,.,当,x=h,时,最大值为,k.,在对称轴的左侧,y,随着,x,的增大而减小,.,在对称轴的右侧,y,随着,x,的增大而增大,.,在对称轴的左侧,y,随着,x,的增大而增大,.,在对称轴的右侧,y,随着,x,的增大而减小,.,20,练习,二次函数,开口方向,对称轴,顶点坐标,y=2(x+3),2,+5,向上,(1,2),向下,向下,(3,7),(2,6),向上,直线,x=,3,直线,x=1,直线,x=3,直线,x=2,(,3,5),y=,3(x,1),2,2,y=4(x,3),2,7,y=,5(2,x),2,6,1.,完成下列表格,:,2.,请回答抛物线,y=4(x,3),2,7,由抛物线,y=4x,2,怎样平移得到,?,3.,抛物线,y=,4(x,3),2,7,能够由抛物线,y=4x,2,平移得到吗,?,21,如何平移:,22,1,抛物线的上下平移,(,1,)把二次函数,y,=(,x,+1),2,的图像,,沿,y,轴向上平移个单位,,得到,_,的图像;,(,2,)把二次函数,_,的图像,,沿,y,轴向下平移,2,个单位,得到,y,=,x,2,+1,的图像,.,考考你学的怎么样,:,y=(x+1),2,+3,y=x,2,+3,23,2,抛物线的左右平移,(,1,)把二次函数,y,=(,x,+1),2,的图像,,沿,x,轴向左平移个单位,,得到,_,的图像;,(,2,)把二次函数,_,的图像,,沿,x,轴向右平移,2,个单位,得到,y,=,x,2,+1,的图像,.,y=(x+4),2,y=(x+2),2,+1,24,3,抛物线的平移:,(,1,)把二次函数,y,=3,x,2,的图像,,先沿,x,轴向左平移个单位,,再沿,y,轴向下平移,2,个单位,,得到,_,的图像;,(,2,)把二次函数,_,的图像,,先沿,y,轴向下平移,2,个单位,,再沿,x,轴向右平移,3,个单位,,得到,y,=-3(,x,+3),2,2,的图像,.,y=3(x+3),2,-2,y=-3(x+6),2,25,4.,抛物线,的顶点坐标是,_,;,向上平移,3,个单位后,,顶点的坐标是,_,;,5.,抛物线,的对称轴是,_,.,6.,抛物线,(-1,0),(-1,3),x=-1,26,7,把二次函数,y,=4(,x,1),2,的图像,沿,x,轴向,_,平移,_,个单位,得到图像的对称轴是直线,x,=3.,8,把抛物线,y,=,3(,x,+2),2,,先沿,x,轴向右,平移,2,个单位,再沿,y,轴向下平移,1,个单位,,得到,_,的图像,9,把二次函数,y,=,2,x,2,的图像,先沿,x,轴,向左平移个单位,再沿,y,轴向下平移,2,个单位,得到,图像的顶点坐标是,_,右,2,y=-3x,2,-1,(-3,-2),右,27,10.,如图所示的抛物线:,当,x=_,时,,y=0,;,当,x0,时,,y_0,;,当,x,在,_,范围内时,,y0,;,当,x=_,时,,y,有最大值,_.,3,0,或,-2,2 x0;,解:二次函数图象的顶点是,(1,-1),,,设抛物线解析式是,y=a(x-1),2,-1,,,其图象过点,(0,0),,,0=a(0-1),2,-1,,,a=1,y=(x-1),2,-1,x2,0,x2,x=0,或,2,32,展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




26.1.3二次函数y=a(x-h)2+k的图象和性质.ppt



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/11058143.html