整式的乘法与因式分解知识点.doc
《整式的乘法与因式分解知识点.doc》由会员分享,可在线阅读,更多相关《整式的乘法与因式分解知识点.doc(9页珍藏版)》请在咨信网上搜索。
1、整式乘除与因式分解一知识点 (重点) 1幂的运算性质:amanamn (m、n为正整数)同底数幂相乘,底数不变,指数相加2 amn (m、n为正整数)幂的乘方,底数不变,指数相乘3 (n为正整数)积的乘方等于各因式乘方的积练习: (1) (2) (3)(4) (5) (6)4 amn (a0,m、n都是正整数,且mn)同底数幂相除,底数不变,指数相减例:(1)x8x2 (2)a4a (3)(ab)5(ab)2(4)(-a)7(-a)5 (5) (-b) 5(-b)25零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于l例:若成立,则满足什么条件?6负指数幂的概念:ap (a0
2、,p是正整数)任何一个不等于零的数的p(p是正整数)指数幂,等于这个数的p指数幂的倒数也可表示为:(m0,n0,p为正整数)7单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例:(1) (2)8单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加例:(1) (2)(3) (4)9多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加例:(1) (2) (3)练习:1计算2x 3(2xy)(xy) 3的结果是 2
3、(310 8)(410 4) 3若n为正整数,且x 2n3,则(3x 3n) 2的值为 4如果(a nbab m) 3a 9b 15,那么mn的值是 5a 2(2a 3a) 6(4x 26x8)(x 2) 72n(13mn 2) 8若k(2k5)2k(1k)32,则k9(3x 2)(2x3y)(2x5y)3y(4x5y) 10在(ax 2bx3)(x 2x8)的结果中不含x 3和x项,则a,b 11一个长方体的长为(a4)cm,宽为(a3)cm,高为(a5)cm,则它的表面积为,体积为。12一个长方形的长是10cm,宽比长少6cm,则它的面积是,若将长方形的长和都扩大了2cm,则面积增大了。1
4、0单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式例:(1)28x4y27x3y(2)-5a5b3c15a4b(3)(2x2y)3(-7xy2)14x4y3 11多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加例:练习:1计算:(1);(2);(3) (4)(5)2计算:(1);(2)(3)3计算:(1);(2) 4.若 (ax3my12)(3x3y2n)=4x6y8 , 则 a = , m = ,= ;12乘法公式:平方差公式:(ab)(ab)a2b2完全平方公式:
5、(ab)2a22abb2 (ab)2a22abb2例1: (1)(7+6x)(76x); (2)(3y x)(x3y); (3)(m2n)(m2n)例2: (1) (x+6)2 (2) (y-5)2 (3) (-2x+5)2 练习:1、=_。_。2、(_)3、;(_)4、已知,那么=_;=_。5、若是一个完全平方式,那么m的值是_。6、多项式的公因式是_。7、因式分解:_。8、因式分解:_。9、计算:_。10、,则=_13因式分解(难点)因式分解的定义把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是积的形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式 乘法 因式分解 知识点
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。