高三数学任意角的三角函数及诱导公式人教实验版(B)知识精讲.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 任意 三角函数 诱导 公式 实验 知识
- 资源描述:
-
高三数学任意角的三角函数及诱导公式人教实验版(B) 【本讲教育信息】 一. 教学内容: 任意角的三角函数及诱导公式 二. 复习内容: 任意角的概念,弧度制,任意角的三角函数的定义,三角函数线,同角三角函数的基本关系,诱导公式。 三. 课标要求: 1. 任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化; 2. 三角函数 (1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; (2)借助单位圆中的三角函数线推导出诱导公式(π/2±α, π±α的正弦、余弦、正切)。 四. 命题走向 从近几年的新课程高考考卷来看,试题内容主要考查三角函数的图形与性质,但解决这类问题的基础是任意角的三角函数及诱导公式,在处理一些复杂的三角问题时,同角的三角函数的基本关系式是解决问题的关键。 预测高考对本讲的考查是: 1. 题型是1道选择题和解答题; 2. 热点内容是三角函数知识的综合应用和实际应用,这也是新课标教材的热点内容。 【教学过程】 一、基本知识回顾 1. 任意角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角。旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做角的顶点。 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它形成了一个零角。 2. 终边相同的角、区间角与象限角 角的顶点与原点重合,角的始边与轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。 终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2kπ(k∈Z),即β∈{β|β=2kπ+α,k∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。 区间角是介于两个角之间的所有角,如α∈{α|≤α≤}=[,]。 3. 弧度制 长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。 角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。 角的弧度数的绝对值是:,其中,l是圆心角所对的弧长,是半径。 角度制与弧度制的换算主要抓住。 弧度与角度互换公式:1rad=°≈57.30°=57°18ˊ、1°=≈0.01745(rad)。 弧长公式:(是圆心角的弧度数), 扇形面积公式:。 4. 三角函数定义 在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;;。 利用单位圆定义任意角的三角函数,设是一个任意角,它的终边与单位圆交于点,那么: (1)叫做的正弦,记做,即; (2)叫做的余弦,记做,即; (3)叫做的正切,记做,即。 5. 三角函数线 三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。利用三角函数线在解决比较三角函数值大小、解三角方程及三角不等式等问题时,十分方便。 以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米)。当角为第一象限角时,则其终边与单位圆必有一个交点,过点作轴交轴于点,根据三角函数的定义:;。 我们知道,直角坐标系内点的坐标与坐标轴的方向有关.当角的终边不在坐标轴时,以为始点、为终点,规定: 当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标.这样,无论哪种情况都有 同理,当角的终边不在轴上时,以为始点、为终点, 规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标。 这样,无论哪种情况都有。像这种被看作带有方向的线段,叫做有向线段。 如上图,过点作单位圆的切线,这条切线必然平行于y轴,设它与的终边交于点,请根据正切函数的定义与相似三角形的知识,借助有向线段,我们有 我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线。 6. 同角三角函数关系式 使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法。 几个常用关系式:①sinα+cosα,sinα-cosα,sinα·cosα;(三式之间可以互相表示) 同理可以由sinα-cosα或sinα·cosα推出其余两式。 ②. ③当时,有。 7. 诱导公式 可用十个字概括为“奇变偶不变,符号看象限”。 诱导公式一:,,其中 诱导公式二: ; 诱导公式三: ; 诱导公式四:; 诱导公式五:; - sin -sin sin -sin -sin sin cos cos cos -cos -cos cos cos sin (1)要化的角的形式为(为常整数); (2)记忆方法:“函数名不变,符号看象限”; (3)对于的三角函数可用“名称正余变,符号看象限”; (4)sin(kπ+α)=(-1)ksinα;cos(kπ+α)=(-1)kcosα(k∈Z); (5);。 二、典型例题 例1. 已知角;(1)在区间内找出所有与角有相同终边的角 (2)集合,那么两集合的关系是什么? 解:(1)所有与角有相同终边的角可表示为:, 则令 , 得 解得 从而或 代回得或 (2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或四个象限平分线上的角的集合,从而: 。 点评:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论。 例2. (2001全国理,1)若sinθcosθ>0,则θ在( ) A. 第一、二象限 B. 第一、三象限 C. 第一、四象限 D. 第二、四象限 解:∵sinθcosθ>0,∴sinθ、cosθ同号。 答案:B 当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B。 例3. (2001春季北京、安徽,8)若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:∵A、B是锐角三角形的两个内角,∴A+B>90°,∴B>90°-A,∴cosB<sinA,sinB>cosA,故选B。 例4. 已知是第三象限角,则是第几象限角? 解一:因为是第三象限角,所以, ∴, ∴当k=3m(m∈Z)时,为第一象限角; 当k= 3m+1(m∈Z)时,为第三象限角, 当k= 3m+2(m∈Z)时,为第四象限角, 故为第一、三、四象限角。 解二:把各象限均分为3等份,再从x轴的正向的上方起依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,则原来是第Ⅲ象限的符号所表示的区域即为的终边所在的区域。 由图可知,是第一、三、四象限角。 点评:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第几象限的符号所表示的区域即为 (n∈N*)的终边所在的区域。 例5. 已知角的终边过点,求的四个三角函数值。 解:因为过点,所以,。 当; ,。 当,;。 例6. 已知角的终边上一点,且,求的值。 解:由题设知,,所以, 得, 从而, 解得或。 当时,, ; 当时,, ; 当时,, 。 例7. (2001全国文,1)tan300°+的值是( ) A. 1+ B. 1- C. -1- D. -1+ 解: tan300°+=tan(360°-60°)+ =-tan60°+=1- 答案:B 例8. 化简: (1); (2)。 解:(1)原式; (2)①当时,原式。 ②当时,原式。 点评:关键是抓住题中的整数是表示的整数倍与公式一中的整数有区别,所以必须把分成奇数和偶数两种类型,分别加以讨论。 例9. 已知,试确定使等式成立的角的集合。 解:∵, ===。 又∵, ∴, 即得或 所以,角的集合为:或。 例10. (1)证明:; (2)求证:。 解:(1)分析:证明此恒等式可采取常用方法,也可以运用分析法,即要证,只要证A·D=B·C,从而将分式化为整式 证一:右边= = = 证二:要证等式,即 只要证 2()()= 即证: , 即1=,显然成立, 故原式得证。 点评:①在进行三角函数的化简和三角恒等式的证明时,需要仔细观察题目的特征,灵活、恰当地选择公式,利用倒数关系比常规的“化切为弦”要简洁得多。②同角三角函数的基本关系式有三种,即平方关系、商的关系、倒数关系。 (2)证一:由题意知,所以。 ∴左边=右边。 ∴原式成立。 证二:由题意知,所以。 又∵, ∴。 证三:由题意知,所以。 , ∴。 点评:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。 例11. 已知,求下列各式的值. (1);(2); 解:(1)由得, 代入所求式得 (2)原式= 将代入得:原式= 点评:齐次弦函数可以通过商数关系转化为只含有正切的式子. 例12. 已知,(<α<) 求; 解:(1)由 得: ∴ ∴ 又<α<∴∴ ∴ (2) 点评:;;知道其中的任一个可以求其它两个,但要注意式子的符号。 三、思维小结 1. 几种终边在特殊位置时对应角的集合为: 角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2. α、、2α之间的关系。 若α终边在第一象限则终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。 若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。 若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。 3. 任意角的概念的意义,任意角的三角函数的定义,同角间的三角函数基本关系、诱导公式由于本重点是任意角的三角函数角的基础,因而学习本节内容时要注意如下几点:(1)熟练地掌握常用的方法与技巧,在使用三角代换求解有关问题时要注意有关范围的限制;(2)要注意差异分析,又要活用公式,要善于瞄准解题目标进行有效的变形,其解题一般思维模式为:发现差异,寻找联系,合理转化。 只有这样才能在高考中夺得高分。三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,,。所以,三角函数是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数。 4. 运用同角三角函数关系式化简、证明 常用的变形措施有:大角化小,切割化弦等,应用 “弦化切”的技巧,即分子、分母同除以一个不为零的,得到一个只含的较简单的三角函数式。 5. 需要记忆的三角公式 【模拟试题】 一、选择题 1. 设角属于第二象限,且,则角属于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 给出下列各函数值:①;②;③;④ 其中符号为负的有( ) A. ① B. ② C. ③ D. ④ 3. 等于( ) A. B. C. D. 4. 已知,并且是第二象限的角,那么的值等于( ) A. B. C. D. 5. 若是第四象限的角,则是( ) A. 第一象限的角 B. 第二象限的角 C. 第三象限的角 D. 第四象限的角 6. 的值( ) A. 小于 B. 大于 C. 等于 D. 不存在 二、填空题 1. 设分别是第二、三、四象限角,则点分别在第___、___、___象限. 2. 设和分别是角的正弦线和余弦线,则给出的以下不等式: ①;②; ③;④, 其中正确的是_____________________________. 3. 若角与角的终边关于轴对称,则与的关系是___________. 4. 设扇形的周长为,面积为,则扇形的圆心角的弧度数是 . 5. 与终边相同的最小正角是_______________. 三、解答题 1. 已知是关于的方程的两个实根,且,z求的值. 2. 已知,求的值. 3. 化简: 4. 已知, 求(1);(2)的值。 【试题答案】 一、选择题 1. C 当时,在第一象限;当时,在第三象限; 而,角在第三象限; 2. C ; ; 3. B 4. A 5. C ,若是第四象限的角,则是第一象限的角,再逆时针旋转 6. A 二、填空题 1. 四、三、二 当是第二象限角时,;当是第三象限角时;当是第四象限角时,; 2. ② 3. 与关于轴对称 4. 5. , 三、解答题 1. 解:,而,则 得,则, 2. 解: 3. 解:原式 4. 解:由得即 (1) (2)展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高三数学任意角的三角函数及诱导公式人教实验版(B)知识精讲.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/8889922.html