2021高考数学(福建-理)一轮作业:4.6-正弦定理和余弦定理.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 福建 一轮 作业 4.6 正弦 定理 余弦
- 资源描述:
-
§4.6 正弦定理和余弦定理 一、选择题 1.在△ABC中,C=60°,AB=,BC=,那么A等于( ). A.135° B.105° C.45° D.75° 解析 由正弦定理知=,即=,所以sin A=,又由题知,BC<AB,∴A=45°. 答案 C 2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为( ). A.60° B.90° C.120° D.150° 解析 由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab, ∴c2=a2+b2+ab=a2+b2-2abcos C, ∴cos C=-,∴C=120°. 答案 C 3.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=λ(λ>0),A=45°,则满足此条件的三角形个数是( ) A.0 B.1 C.2 D.很多个 解析:直接依据正弦定理可得=,可得sin B===>1,没有意义,故满足条件的三角形的个数为0. 答案:A 4.在△ABC中,角A,B,C所对的边分别为a,b,c,若acos A=bsin B,则sin Acos A+cos2B等于( ). A.- B. C.-1 D.1 解析 依据正弦定理,由acos A=bsin B,得sin Acos A=sin2B,∴sin Acos A+cos2B=sin2B+cos2B=1. 答案 D 5. 在中,角所对边的长分别为,若,则的最小值为( ) A. B. C. D. 解析 ,故选C. 答案 C 6.在△ABC中,sin2 A≤sin2 B+sin2 C-sin Bsin C,则A的取值范围是( ). A. B. C. D. 解析 由已知及正弦定理有a2≤b2+c2-bc,而由余弦定理可知a2=b2+c2-2bccos A,于是可得b2+c2-2bccos A≤b2+c2-bc,可得cos A≥,留意到在△ABC中,0<A<π,故A∈. 答案 C 7.若△ABC的内角A、B、C所对的边a、b、c满足(a+b)2-c2=4,且C=60°,则ab的值为( ). A. B.8-4 C.1 D. 解析 依题意得,两式相减得ab=,选A. 答案 A 二、填空题 8.如图,△ABC中,AB=AC=2,BC=2,点D在BC边上,∠ADC=45°,则AD的长度等于________. 解析 在△ABC中,∵AB=AC=2,BC=2,∴cos C=,∴sin C=;在△ADC中,由正弦定理得,=, ∴AD=×=. 答案 9. 在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且a=2csin A,角C=________. 解析:依据正弦定理,=, 由a=2csin A,得=, ∴sin C=,而角C是锐角.∴角C=. 答案: 10.设△ABC的内角A,B,C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA,则sinA∶sinB∶sinC为______. 答案 6∶5∶4 11.若AB=2,AC=BC,则S△ABC的最大值________. 解析 (数形结合法)由于AB=2(定长),可以令AB所在的直线为x轴,其中垂线为y轴建立直角坐标系,则A(-1,0),B(1,0),设C(x,y),由AC=BC, 得 = ,化简得(x-3)2+y2=8, 即C在以(3,0)为圆心,2为半径的圆上运动, 所以S△ABC=·|AB|·|yC|=|yC|≤2,故答案为2. 答案 2 12.在锐角△ABC中,角A,B,C的对边分别为a,b,c,若+=6cos C,则+的值是________. 解析 法一 取a=b=1,则cos C=,由余弦定理得c2=a2+b2-2abcos C=,∴c=,在如图所示的等腰三角形ABC中,可得tan A=tan B=,又sin C=,tan C=2,∴+=4. 法二 由+=6cos C,得=6·, 即a2+b2=c2,∴+=tan C= ==4. 答案 4 三、解答题 13.叙述并证明余弦定理. 解析 余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC中,a,b,c为A,B,C的对边,有a2=b2+c2-2bccos A,b2=c2+a2-2cacos B,c2=a2+b2-2abcos C, 法一 如图(1), 图(1) a2=· =(-)·(-) =2-2·+2 =2-2||·||cos A+2 =b2-2bccos A+c2,即a2=b2+c2-2bccos A. 同理可证b2=c2+a2-2cacos B,c2=a2+b2-2abcos C. 法二 图(2) 已知△ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴建立直角坐标系,如图(2)则C(bcos A,bsin A),B(c,0), ∴a2=|BC|2=(bcos A-c)2+(bsin A)2 =b2cos2A-2bccos A+c2+b2sin2A =b2+c2-2bccos A. 同理可证b2=c2+a2-2cacos B, c2=a2+b2-2abcos C. 14.在△ABC中,a、b、c分别为A、B、C的对边,B=,b=,a+c=4,求a. 解析:由余弦定理b2=a2+c2-2accos B =a2+c2-2accos =a2+c2+ac=(a+c)2-ac. 又∵a+c=4,b=,∴ac=3. 联立 解得a=1或a=3. 15.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB. (1)求角B的大小; (2)若b=3,sinC=2sinA,求a,c的值. 16.在△ABC中,内角A,B,C的对边分别为a,b,c.已知=. (1)求的值; (2)若cos B=,△ABC的周长为5,求b的长. 解析 (1)由正弦定理,设===k, 则==, 所以=. 即(cos A-2cos C)sin B=(2sin C-sin A)cos B, 化简可得sin(A+B)=2sin(B+C). 又A+B+C=π, 所以sin C=2sin A,因此=2. (2)由=2得c=2a. 由余弦定理及cos B=得 b2=a2+c2-2accos B=a2+4a2-4a2×=4a2. 所以b=2a.又a+b+c=5.从而a=1,因此b=2.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2021高考数学(福建-理)一轮作业:4.6-正弦定理和余弦定理.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3810350.html