分享
分销 收藏 举报 申诉 / 14
播放页_导航下方通栏广告

类型军考数学复习提纲.doc

  • 上传人:人****来
  • 文档编号:3714814
  • 上传时间:2024-07-15
  • 格式:DOC
  • 页数:14
  • 大小:625KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 复习 提纲
    资源描述:
    军考数学复习提纲 第一章 集合与简易逻辑 一.基本概念 1.集合,子集; 2.集合的运算:交集,并集,补集; 3.逻辑连结词:或,且,非; 4.四种命题及其相互关系:原命题,逆命题,否命题,逆否命题; 5.充分条件,必要条件,充要条件. 第二章 函数 一. 映射与函数 1.基本概念:映射,函数,反函数,复合函数; 2.函数的性质:1)单调性; 2)奇偶性(注意判定奇偶性的前提是函数的定义域关于原点对称,否则即为非奇非偶函数); 3)周期性(注意辨别周期与最小正周期). 3.反函数的性质:1)互为反函数的两个函数的图像关于直线y=x对称; 2)一个函数和它的反函数具有相同的单调性; 3)奇函数的反函数仍为奇函数,偶函数则不确定. 4.复合函数 函数 单调情况 内层函数u=g(x) 增 增 减 减 外层函数y=f(u) 增 减 增 减 复合函数y=f[g(x)] 增 减 减 增 5.函数图像的平移变换:上加下减,左加下减. 二. 基本函数与方程 1.二次函数(初中已掌握,此处略过); 2.指数与指数函数 3.对数与对数函数 1.对数的性质 1)零和负数没有对数; 2)1的对数为0; 3) . 4.指数方程 1)一般形式的,两边同时取对数; 2)含有常数的,换元. 5. 对数方程 与指数方程相对应,可分别采取两边同时取指数式或换元的方法. 第三章 数列 一. 基本概念 数列,首项,公差,公比,等差中项,等比中项,等差数列,等比数列. 二. 等差数列与等比数列的性质比较 等差数列性质 等比数列性质 1、定义 ; ; 2、通项 公式 3、前n项 和 4、中项 a、A、b成等差数列A=; 是其前k项与后k项的等差中项,即:= a、A、b成等比数列 (不等价于,只能); 是其前k项与后k项的 等比中项,即: 5、下标和公式 若m+n=p+q,则 特别地,若m+n=2p,则 若m+n=p+q,则 特别地,若m+n=2p,则 6、首尾项性质 等差数列的第k项与倒数第k项的和等于首尾两项的和, 即: 等比数列的第k项与倒数第k项的积等于首尾两项的积, 即: 7、结论 { }为等差数列,若m,n,p成等差数列, 则成等差数列 { }为等比数列,若m,n,p成等差数列,则成等比数列 (两个等差数列的和仍是等差数列) 等差数列{},{}的公差分别为,则数列{}仍为等差数列,公差为 (两个等比数列的积仍是等比数列) 等比数列{},{}的公比分别为,则数列{}仍为等比数列,公差为 取出等差数列的所有奇(偶)数项,组成的新数列仍为等差数列,且公差为 取出等比数列的所有奇(偶)数项,组成的新数列仍为等比数列,且公比为 若则 无此性质; 若则 无此性质; 若 无此性质; 成等差数列,公差为 成等差数列,公比为 三. Sn与an的关系 an=Sn-(Sn-1); a1=S1. 四.错位相减法 错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=Bn*Cn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。 第四章 三角函数 一. 基本知识 弧度制,诱导公式,常用角的三角函数值 二. 两角和与差的三角函数(必须牢记) 1.两角和与差的公式 cos(α+β)=cosαcosβ-sinαsinβ;   cos(α-β)=cosαcosβ+sinαsinβ;   sin(α+β)=sinαcosβ+cosαsinβ;   sin(α-β)=sinαcosβ -cosαsinβ;   tan(α+β)=(tanα+tanβ)/(1-tanαtanβ);   tan(α-β)=(tanα-tanβ)/(1+tanαtanβ. 2. 二倍角公式 3.半角公式 4.三角函数的图像和性质 定义域 R R 值域 R 周期性 奇偶性 奇函数 偶函数 奇函数 单调性 上为增函数;上为减函数() ;上为增函数 上为减函数 () 上为增函数() 第五章 向量及其应用 一. 基本概念 向量,向量的模.零向量,平行向量,法向量. 二. 向量的运算 1. 向量的加减法(平行四边形定则或三角形法则); 2. 实数与向量的积 设λ、μ是实数,那么满足如下运算性质: (λμ)a= λ(μa); (λ + μ)a= λa+ μa; λ(a±b) = λa± λb; (-λ)a=-(λa) = λ(-a). 3.向量的数量积 1)数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积; 2)数量积具有以下性质: a·a=|a|2≥0; a·b=b·a; k(a·b)=(ka)b=a(kb); a·(b+c)=a·b+a·c. 4.平面向量 1)平面向量基本定理 如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:,其中不共线的向量叫做表示这一平面内所有向量的一组基底 2)向量的夹角:已知两个非零向量与,作=, =,则∠AOB= ()叫做向量与的夹角 cos== 当且仅当两个非零向量与同方向时,θ=00,当且仅当与反方向时θ=1800,同时与其它任何非零向量之间不谈夹角这一问题 3)两个非零向量垂直的充要条件:⊥·=O 4)定比分点公式:   如图所示,点P分线段P1P2的比例为:P1P/PP2=γ,那么:    5. 空间向量(许多性质基本上可以由平面向量类推得到) 第六章 不等式 一. 基本不等式 ( 当且仅当a=b时,等号成立), 变形 , (当且仅当a=b时,等号成立); 二. 不等式证明的基本方法 作差,作商(作商前要注意两项的符号). 三. 不等式的解法 1.一元一次,二次不等式; 2.高次不等式(因式分解); 3.分式不等式(化为一元一次,二次不等式或高次不等式); 4.绝对值不等式(零点分段进行分类讨论或者两边平方); 5.无理不等式(两边平方化成有理不等式); 6.指数,对数不等式(进行指数或对数运算化为有理不等式). 第七,八章 解析几何 一. 直线方程 1.斜率的定义; 2.点到直线的距离公式 点P(x0,y0)到直线Ax+By+C=0的距离: 二.圆 1.圆的定义与方程; 2.点,直线.圆与圆的关系. 三.圆锥曲线性质汇总与比较 椭圆 双曲线 抛物线 定义 1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹 2.与定点和直线的距离之比为定值e的点的轨迹.(0<e<1) 1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹 2.与定点和直线的距离之比为定值e的点的轨迹.(e>1) 与定点和直线的距离相等的点的轨迹. 轨迹条件 点集:({M||MF1+|MF2|=2a,|F 1F2|<2a= 点集:{M||MF1|-|MF2|. =±2a,|F2F2|>2a}. 点集{M| |MF|=点M到直线l的距离}. 图形 方 程 标准方程 (>0) (a>0,b>0) 参数方程 (t为参数) 范围 ─a£x£a,─b£y£b |x| ³ a,yÎR x³0 中心 原点O(0,0) 原点O(0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴 x轴,y轴; 长轴长2a,短轴长2b x轴,y轴; 实轴长2a, 虚轴长2b. x轴 焦点 F1(c,0), F2(─c,0) F1(c,0), F2(─c,0) 准 线 x=± 准线垂直于长轴,且在椭圆外. x=± 准线垂直于实轴,且在两顶点的内侧. x=- 准线与焦点位于顶点两侧,且到顶点的距离相等. 焦距 2c (c=) 2c (c=) 离心率 e=1 第九章 平面,直线与简单几何体 一.基本定义 二.简单几何体 1.棱柱,棱锥; 2.球 半径是R的球的体积 计算公式是:. 半径是R的球的表面积计算公式是:. 三.正四面体的一些常用性质(自己多去尝试计算推导) 当正四面体的棱长为a时,一些数据如下: 1)高:√6a/3。中心把高分为1:3两部分; 2)表面积:√3a^2; 3)体积:√2a^3/12; 4)对棱中点的连线段的长:√2a/2; 5)外接球半径:√6a/4, 内切球半径:√6a/12, 棱切球半径:√2a/4. 第十章 排列,组合与二项式定理 一. 加法原理与乘法原理 二. 排列数与组合数 三. 二项式定理 1. 其中, 又有等记法,称为二项式系数,即取的组合数目。此系数亦可表示为杨辉三角形。 2.二项式系数的性质 1)对称性:与首末两端”等距离”的两项的二项式系数相等; 2)增减性与最大值.当r<(n+1)/2时,二项式系数不断增大,由对称性后半部分逐渐减小,且在中间取得最大值; 3)二项式展开式中的所有二项式的系数和等于2ⁿ; 4)二项展开式中所有奇数项的二项式系数之和等于所有偶数项的二项式系数之和. 第十一章 导数 一. 导数的定义,几何意义 二. 函数的求导法则 1. 2. 复合函数求导 若h(x)=f(g(x)),则h'(x)=f'(g(x))g'(x). 3. 常用求导公式 数学考试注意事项 1.先做简单题,后做难题。 2.不要放弃难题,要知道数学讲究步骤分,我建议放弃最后一大题后一问或两问。 3.若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,不提倡,重点是要平时学好)考试时,题目有了思路就赶紧做,不要犹豫。 4.整体把握、抓大放小、该放弃的就放弃 拿到试卷后可以先快速浏览一下整个试卷上的所有题目,对于能够很快做出来的题目,一定要拿到应得的分数。 分值越大的题目,越不要轻易放弃;分值越小的题目,越不要花太多的时间。 对于花了一定时间仍然不能做出来的题目,要勇于放弃。 5.碰到难题时 考试碰到难题时,你可以先用“直觉”最快的找到解题思路;如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧,然后进行尝试;如果这样还不行,你还可以从你脑中的知识体系和解题技巧体系中逐一搜索,找到可能的解题思路。 6.卷面整洁、字迹清楚、注意小节 做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。 7.拿到试卷后是否整体浏览一下 拿到试卷之后,可以总体上浏览一下,根据以前积累的考试经验,大致估计一下试卷中每部分应该分配的时间。 8.安排答题顺序 关于考试时答题顺序,一种策略是按照试卷从前到后的顺序答题,另外一种策略是按照自己总结出的答题顺序。无论采取哪种策略,你必须非常清楚每部分应该使用的最少和最多的答题时间。 按照自己总结的答题顺序:先做那些即使延长答题时间,也不见得会得分更多的题目,后做那些需要仔细思考和推敲的题目。例如,数学先做会做的题目,再做难题,所谓难题,就是你思考了好几分钟仍然无法做出的题目。再例如,英语和语文,你可以先把填空、选择、作文等题目做完,然后再做阅读题目。 9.确定每部分的答题时间 考试时能够做完的课程:对于那些每次考试能做完的课程,例如英语、历史等课程,你可以按照每部分考试分值的比例,确定每部分做题的时间。例如选择题占20%的分数,你就必须在20%的考试时间内做完选择题。然后,你再根据每次考试之后的得分情况,仔细分析是否可以在保证准确的情况下将某些部分的做题时间压缩,这样,你就有更多的时间来做相对花时间长的部分。 考试时不能做完的课程:对于那些每次考试往往不能做完的课程,例如数学、物理等课程,你应该统计出:一、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。二、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。 一开始,你要根据钟表和统计数字,而不能靠感觉。等你有了足够的经验后,你的感觉就准确了,这时,考试时碰到某些题目,看一眼或者做一、两分钟后,你就能感觉出你大约能用多长时间做出来。 10.将考试时间安排深深烙印 高考的一切均源于平时的训练。为了防止高考时过早的提前做完试卷,或不能按时做完试卷,你要在平时考试和做限时模拟题时训练高考时间安排。 如果你能提前知道高考的时间安排,例如语文是早上9:00开始考试,11:30结束。那么,你就可以经常训练自己,把高考的时间安排深深烙印到脑海中。你每天上午上课时,放一个钟表在旁边,到9:00时,就对自己说,开始考试了(虽然你其实是在上课),到10:45时,你就对自己说,该写作文了,到11:30时,你对自己说,该交卷了。经过长期的每天不间断的训练,一段时期后,考试时间安排就会深深烙印到你脑海中,这样,无论你多么紧张,无论你在做什么,看到钟表,你就能马上反应到该干什么了。这样,考试时,你就不会出现过早的提前做完试卷或者不能按时做完试卷了。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:军考数学复习提纲.doc
    链接地址:https://www.zixin.com.cn/doc/3714814.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork