正弦与余弦定理练习题及答案.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 余弦 定理 练习题 答案
- 资源描述:
-
正弦定理练习题 1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于( ) A. B. C. D.2 2.在△ABC中,已知a=8,B=60°,C=75°,则b等于( ) A.4 B.4 C.4 D. 3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=4,b=4,则角B为( ) A.45°或135° B.135° C.45° D.以上答案都不对 4.在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于( ) A.1∶5∶6 B.6∶5∶1 C.6∶1∶5 D.不确定 5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=,则c=( ) A.1 B. C.2 D. 6.在△ABC中,若=,则△ABC是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰三角形或直角三角形 7.已知△ABC中,AB=,AC=1,∠B=30°,则△ABC的面积为( ) A. B. C.或 D.或 8.△ABC的内角A、B、C的对边分别为a、b、c.若c=,b=,B=120°,则a等于( ) A. B.2 C. D. 9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=,C=,则A=________. 10.在△ABC中,已知a=,b=4,A=30°,则sinB=________. 11.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________. 12.在△ABC中,a=2bcosC,则△ABC的形状为________. 13.在△ABC中,A=60°,a=6,b=12,S△ABC=18,则=________,c=________. 14.在△ABC中,已知a=3,cosC=,S△ABC=4,则b=________. 15.在△ABC中,a、b、c分别为角A、B、C的对边,若a=2,sincos=,sin Bsin C=cos2,求A、B及b、c. 16.△ABC中,ab=60,sin B=sin C,△ABC的面积为15,求边b的长. 余弦定理练习题 1.在△ABC中,如果BC=6,AB=4,cosB=,那么AC等于( ) A.6 B.2 C.3 D.4 2.在△ABC中,a=2,b=-1,C=30°,则c等于( ) A. B. C. D.2 3.在△ABC中,a2=b2+c2+bc,则∠A等于( ) A.60° B.45° C.120° D.150° 4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若(a2+c2-b2)tanB=ac,则∠B的值为( ) A. B. C.或 D.或 5.在△ABC中,a、b、c分别是A、B、C的对边,则acosB+bcosA等于( ) A.a B.b C.c D.以上均不对 6.已知锐角三角形ABC中,||=4,||=1,△ABC的面积为,则·的值为( ) A.2 B.-2 C.4 D.-4 7.在△ABC中,b=,c=3,B=30°,则a为( ) A. B.2 C.或2 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=5,则边c的值为________. 10.在△ABC中,sin A∶sin B∶sin C=2∶3∶4,则cos A∶cos B∶cos C=________. 11.在△ABC中,a=3,cos C=,S△ABC=4,则b=________. 12.已知△ABC的三边长分别是a、b、c,且面积S=,则角C=________. 13.在△ABC中,BC=a,AC=b,a,b是方程x2-2x+2=0的两根,且2cos(A+B)=1,求AB的长. 14.在△ABC中,BC=,AC=3,sin C=2sin A.(1)求AB的值;(2)求sin(2A-)的值. 正弦定理 1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于( ) A. B. C. D.2 解析:选A.应用正弦定理得:=,求得b==. 2.在△ABC中,已知a=8,B=60°,C=75°,则b等于( ) A.4 B.4 C.4 D. 解析:选C.A=45°,由正弦定理得b==4. 3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=4,b=4,则角B为( ) A.45°或135° B.135° C.45° D.以上答案都不对 解析:选C.由正弦定理=得:sinB==,又∵a>b,∴B<60°,∴B=45°. 4.在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于( ) A.1∶5∶6 B.6∶5∶1 C.6∶1∶5 D.不确定 解析:选A.由正弦定理知sinA∶sinB∶sinC=a∶b∶c=1∶5∶6. 5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=,则c=( ) A.1 B. C.2 D. 解析:选A.C=180°-105°-45°=30°,由=得c==1. 6.在△ABC中,若=,则△ABC是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰三角形或直角三角形 解析:选D.∵=,∴=, sinAcosA=sinBcosB,∴sin2A=sin2B 即2A=2B或2A+2B=π,即A=B,或A+B=. 7.已知△ABC中,AB=,AC=1,∠B=30°,则△ABC的面积为( ) A. B. C.或 D.或 解析:选D.=,求出sinC=,∵AB>AC, ∴∠C有两解,即∠C=60°或120°,∴∠A=90°或30°. 再由S△ABC=AB·ACsinA可求面积. 8.△ABC的内角A、B、C的对边分别为a、b、c.若c=,b=,B=120°,则a等于( ) A. B.2 C. D. 解析:选D.由正弦定理得=, ∴sinC=. 又∵C为锐角,则C=30°,∴A=30°, △ABC为等腰三角形,a=c=. 9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=,C=,则A=________. 解析:由正弦定理得:=, 所以sinA==. 又∵a<c,∴A<C=,∴A=. 答案: 10.在△ABC中,已知a=,b=4,A=30°,则sinB=________. 解析:由正弦定理得= ⇒sinB===. 答案: 11.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________. 解析:C=180°-120°-30°=30°,∴a=c, 由=得,a==4, ∴a+c=8. 答案:8 12.在△ABC中,a=2bcosC,则△ABC的形状为________. 解析:由正弦定理,得a=2R·sinA,b=2R·sinB, 代入式子a=2bcosC,得 2RsinA=2·2R·sinB·cosC, 所以sinA=2sinB·cosC, 即sinB·cosC+cosB·sinC=2sinB·cosC, 化简,整理,得sin(B-C)=0. ∵0°<B<180°,0°<C<180°, ∴-180°<B-C<180°, ∴B-C=0°,B=C. 答案:等腰三角形 13.在△ABC中,A=60°,a=6,b=12,S△ABC=18,则=________,c=________. 解析:由正弦定理得===12,又S△ABC=bcsinA,∴×12×sin60°×c=18, ∴c=6. 答案:12 6 14.在△ABC中,已知a=3,cosC=,S△ABC=4,则b=________. 解析:依题意,sinC=,S△ABC=absinC=4, 解得b=2. 答案:2 15.在△ABC中,a、b、c分别为角A、B、C的对边,若a=2,sincos=,sin Bsin C=cos2,求A、B及b、c. 解:由sincos=,得sinC=, 又C∈(0,π),所以C=或C=. 由sin Bsin C=cos2,得 sin Bsin C=[1-cos(B+C)], 即2sin Bsin C=1-cos(B+C), 即2sin Bsin C+cos(B+C)=1,变形得 cos Bcos C+sin Bsin C=1, 即cos(B-C)=1,所以B=C=,B=C=(舍去), A=π-(B+C)=. 由正弦定理==,得 b=c=a=2×=2. 故A=,B=,b=c=2. =×-×=. 又0<A+B<π,∴A+B=. (2)由(1)知,C=,∴sin C=. 由正弦定理:==得 a=b=c,即a=b,c=b. ∵a-b=-1,∴b-b=-1,∴b=1. ∴a=,c=. 16.△ABC中,ab=60,sin B=sin C,△ABC的面积为15,求边b的长. 解:由S=absin C得,15=×60×sin C, ∴sin C=,∴∠C=30°或150°. 又sin B=sin C,故∠B=∠C. 当∠C=30°时,∠B=30°,∠A=120°. 又∵ab=60,=,∴b=2. 当∠C=150°时,∠B=150°(舍去). 故边b的长为2. 余弦定理 1.在△ABC中,如果BC=6,AB=4,cosB=,那么AC等于( ) A.6 B.2 C.3 D.4 解析:选A.由余弦定理,得 AC= = =6. 2.在△ABC中,a=2,b=-1,C=30°,则c等于( ) A. B. C. D.2 解析:选B.由余弦定理,得c2=a2+b2-2abcosC =22+(-1)2-2×2×(-1)cos30° =2, ∴c=. 3.在△ABC中,a2=b2+c2+bc,则∠A等于( ) A.60° B.45° C.120° D.150° 解析:选D.cos∠A===-, ∵0°<∠A<180°,∴∠A=150°. 4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若(a2+c2-b2)tanB=ac,则∠B的值为( ) A. B. C.或 D.或 解析:选D.由(a2+c2-b2)tanB=ac,联想到余弦定理,代入得 cosB==·=·. 显然∠B≠,∴sinB=.∴∠B=或. 5.在△ABC中,a、b、c分别是A、B、C的对边,则acosB+bcosA等于( ) A.a B.b C.c D.以上均不对 解析:选C.a·+b·==c. 6.已知锐角三角形ABC中,||=4,||=1,△ABC的面积为,则·的值为( ) A.2 B.-2 C.4 D.-4 解析:选A.S△ABC==||·||·sinA =×4×1×sinA, ∴sinA=,又∵△ABC为锐角三角形, ∴cosA=, ∴·=4×1×=2. 7.在△ABC中,b=,c=3,B=30°,则a为( ) A. B.2 C.或2 D.2 解析:选C.在△ABC中,由余弦定理得b2=a2+c2-2accosB,即3=a2+9-3a, ∴a2-3a+6=0,解得a=或2. 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 解析:∵2B=A+C,A+B+C=π,∴B=. 在△ABD中, AD= = =. 答案: 9.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=5,则边c的值为________. 解析:S=absinC,sinC=,∴C=60°或120°. ∴cosC=±,又∵c2=a2+b2-2abcosC, ∴c2=21或61,∴c=或. 答案:或 10.在△ABC中,sin A∶sin B∶sin C=2∶3∶4,则cos A∶cos B∶cos C=________. 解析:由正弦定理a∶b∶c=sin A∶sin B∶sin C=2∶3∶4, 设a=2k(k>0),则b=3k,c=4k, cos B===, 同理可得:cos A=,cos C=-, ∴cos A∶cos B∶cos C=14∶11∶(-4). 答案:14∶11∶(-4) 11.在△ABC中,a=3,cos C=,S△ABC=4,则b=________. 解析:∵cos C=,∴sin C=. 又S△ABC=absinC=4, 即·b·3·=4, ∴b=2. 答案:2 12.已知△ABC的三边长分别是a、b、c,且面积S=,则角C=________. 解析:absinC=S==· =abcosC,∴sinC=cosC,∴tanC=1,∴C=45°. 答案:45° 13.在△ABC中,BC=a,AC=b,a,b是方程x2-2x+2=0的两根,且2cos(A+B)=1,求AB的长. 解:∵A+B+C=π且2cos(A+B)=1, ∴cos(π-C)=,即cosC=-. 又∵a,b是方程x2-2x+2=0的两根, ∴a+b=2,ab=2. ∴AB2=AC2+BC2-2AC·BC·cosC =a2+b2-2ab(-) =a2+b2+ab=(a+b)2-ab =(2)2-2=10, ∴AB=. 14.在△ABC中,BC=,AC=3,sin C=2sin A. (1)求AB的值; (2)求sin(2A-)的值. 解:(1)在△ABC中,由正弦定理=, 得AB=BC=2BC=2. (2)在△ABC中,根据余弦定理,得 cos A==, 于是sin A==. 从而sin 2A=2sin Acos A=, cos 2A=cos2 A-sin2 A=. 所以sin(2A-)=sin 2Acos-cos 2Asin=.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




正弦与余弦定理练习题及答案.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2571335.html