2023届湖北省荆州市高一数学第一学期期末质量检测试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 湖北省 荆州市 数学 第一 学期 期末 质量 检测 试题 解析
- 资源描述:
-
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共12小题,共60分) 1.命题“,有”的否定是() A.,使 B.,有 C.,使 D.,使 2.已知,则 A. B. C. D. 3.已知,,,则( ) A. B. C. D. 4.若两直线与平行,则它们之间的距离为 A. B. C. D. 5.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有 A.0条 B.1条 C.2条 D.3条 6.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是 A.3 B.4 C.5 D.7 7.若,则的值是() A. B. C. D.1 8.非零向量,,若点关于所在直线的对称点为,则向量为 A. B. C. D. 9.已知幂函数的图象过点(2,),则的值为( ) A B. C. D. 10.函数在区间上的简图是( ) A. B. C. D. 11.已知集合,且,则的值可能为( ) A. B. C.0 D.1 12.已知函数,则 的值等于 A. B. C. D. 二、填空题(本大题共4小题,共20分) 13.求值:___________. 14.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________. 15.已知函数,若方程有四个不同的解,且,则的最小值是______,的最大值是______. 16.在中,,,,若将绕直线旋转一周,则所形成的几何体的体积是__________ 三、解答题(本大题共6小题,共70分) 17.已知函数(,且) (1)若函数的图象过点,求b的值; (2)若函数在区间上的最大值比最小值大,求a的值 18.已知函数. (1)求函数的最小正周期及其单调递减区间; (2)若,是函数的零点,不写步骤,直接用列举法表示的值组成的集合. 19.(1)已知,求的值; (2)已知,求的值; 20.已知函数f(x)=(m∈Z)为偶函数,且在(0,+∞)上为增函数 (1)求m的值,并确定f(x)的解析式; (2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由 21.已知函数 (1)求的值域; (2)当时,关于的不等式有解,求实数的取值范围 22.已知,,计算: (1) (2) 参考答案 一、选择题(本大题共12小题,共60分) 1、D 【解析】全称命题的否定:将任意改存在并否定原结论,即可知正确选项. 【详解】由全称命题的否定为特称命题, ∴原命题的否定为. 故选:D 2、D 【解析】 考点:同角间三角函数关系 3、B 【解析】 分析】由指数函数和对数函数单调性,结合临界值可确定大小关系. 【详解】,. 故选:B. 4、D 【解析】根据两直线平行求得值,利用平行线间距离公式求解即可 【详解】与平行, ,即 直线为,即 故选D 【点睛】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足, 5、B 【解析】数形结合分析出为定值,因此为定值, 从而确定直线AB只有一条. 【详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条. 故选:B 【点睛】本题考查直线与圆的实际应用,属于中档题. 6、D 【解析】由函数的周期为5,可得f(x+5)=f(x),由于f(x)为奇函数,f(3)=0,若x∈(0,10),则可得出f(3)=f(-2)=-f(2)=0,即f(2)=0,∴f(8)=f(3)=0,∴f(7)=f(2)=0.在f(x+5)=f(x)中,令x=-2.5,可得f(2.5)=f(-2.5)=-f(2.5),∴f(2.5)=f(7.5)=0.再根据f(5)=f(0)=0,故在(0,10)上,y=f(x)的零点的个数是 2,2.5,3,5,7,7.5,8,共计7个. 故选D 点睛:本题是函数性质的综合应用,奇偶性周期性的结合,先从周期性入手,利用题目条件中的特殊点得出其它的零点,再结合奇偶性即可得出其它的零点. 7、D 【解析】由求出a、b,表示出,进而求出的值. 详解】由, . 故选:D 8、A 【解析】如图由题意点B关于所在直线的对称点为B1,所以∠BOA=∠B1OA,所以又由平行四边形法则知:,且向量的方向与向量的方向相同,由数量积的概念向量 在向量方向上的投影是OM=,设与向量方向相同的单位向量为:,所以向量=2=2=,所以=. 故选A. 点睛:本题利用平行四边形法则表示和向量,因为对称,所以借助数量积定义中的投影及单位向量即可表示出和向量,解题时要善于借助图像特征体现向量的工具作用. 9、A 【解析】令幂函数且过 (2,),即有,进而可求的值 【详解】令,由图象过(2,) ∴,可得 故 ∴ 故选:A 【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题 10、B 【解析】分别取,代入函数中得到值,对比图象即可利用排除法得到答案. 【详解】当时,,排除A、D; 当时,,排除C. 故选:B. 11、C 【解析】化简集合得范围,结合判断四个选项即可 【详解】集合,四个选项中,只有, 故选:C 【点睛】本题考查元素与集合的关系,属于基础题 12、C 【解析】因为,所以,故选C. 二、填空题(本大题共4小题,共20分) 13、. 【解析】根据指数幂的运算性质,结合对数的运算性质进行求解即可. 【详解】, 故答案为: 14、 【解析】求出扇形的半径后,利用扇形的面积公式可求得结果. 【详解】由已知得弧长,, 所以该扇形半径, 所以该扇形的面积. 故答案为: 15、 ①.1 ②.4 【解析】画出的图像,再数形结合分析参数的的最小值,再根据对称性与函数的解析式判断中的定量关系化简再求最值即可. 【详解】画出的图像有: 因为方程有四个不同的解,故的图像与有四个不同的交点,又由图,, 故的取值范围是,故的最小值是1. 又由图可知,,,故,故. 故. 又当时, .当时, ,故. 又在时为减函数,故当时取最大值. 故答案为:(1).1 (2).4 【点睛】本题主要考查了数形结合求解函数零点个数以及范围的问题,需要根据题意分析交点间的关系,并结合函数的性质求解.属于难题. 16、 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥, 所以OA=,OB=1 所以旋转体的体积: 故答案为. 三、解答题(本大题共6小题,共70分) 17、(1)1(2)或 【解析】(1)将点坐标代入求出b的值;(2)分与两种情况,根据函数单调性表达出最大值和最小值,列出方程,求解a的值. 【小问1详解】 ,解得. 【小问2详解】 当时,在区间上单调递减,此时,,所以,解得:或0(舍去); 当时,在区间上单调递增,此时,,所以,解得:或0(舍去). 综上:或 18、(1)的最小正周期为,单调递减区间是 (2) 【解析】(1)根据正弦函数的最小正周期公式计算可得,根据正弦函数的单调性求出函数的单调区间. (2)先求出函数的零点,是或中的元素,在分类讨论计算可得. 【小问1详解】 的最小正周期为: 对于函数, 当时,单调递减, 解得 所以函数的单调递减区间是; 【小问2详解】 因,即 所以函数的零点满足:或 即或 所以是或中的元素 当时, 则 当(或,)时, 则 当, 则 所以的值的集合是 19、(1);(2)3. 【解析】(1)根据指数的运算性质可得,再由与的关系求值即可. (2)由对数的运算性质可得,再由正余弦的齐次计算求目标式的值. 【详解】(1)由,可得:, ∴,解得. (2)由,可得:,即, ∴. 20、(1)或, (2) 存在实数,使在区间上的最大值为2 【解析】(1)由条件幂函数,在上为增函数, 得到 解得 2分 又因为 所以或 3分 又因为是偶函数 当时,不满足为奇函数; 当时,满足为偶函数; 所以 5分 (2)令, 由得: 在上有定义,且 在上为增函数.7分 当时, 因为所以 8分 当时, 此种情况不存在, 9分 综上,存在实数,使在区间上的最大值为2 10分 考点:函数的基本性质运用 点评:解决该试题的关键是能理解函数的奇偶性和单调性的运用,能理解复合函数的性质得到最值,属于基础题 21、(1) (2) 【解析】(1)由.令,换元后再配方可得答案; (2)由得,令,转化为时有解的问题可得答案 【小问1详解】 , 令,则, 所以的值域为 【小问2详解】 ,即, 令,则,即在上有解, 当时,m无解;当时,可得, 因为,当且仅当时,等号成立, 所以.综上,实数m的取值范围为 22、(1);(2). 【解析】(1)先把化为,然后代入可求; (2)先把化为,然后代入可求. 【详解】(1); (2) . 【点睛】本题主要考查齐次式的求值问题,齐次式一般转化为含有正切的式子,结合正切值可求.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2023届湖北省荆州市高一数学第一学期期末质量检测试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2537696.html