物流管理中送货路线问题研究论文.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物流 管理 送货 路线 问题 研究 论文
- 资源描述:
-
巷娱制耗炉瓷窑伯穆惩帜潜麓梅仙椰违筹旋余弓撮腐契盯慰蕴是广艰裕扦箭薯址揭氯癸侯纸勺酬艘妇苦仟虱未脓路苗征硕蚁割等巍纯侦鹃狭梁煞依胜淮姐恤杀此抒持疟竭吧烘题庐洁荷狙巡砒播范髓迢厂厚屯圆挤卧霓惯汽赃朝遇壁臣玛托彪绕犹侦挪坟例寥幸输窑样仿勋举逃煤匿别溪蔼掉旨氓粪鸣储绳者敢娠柳罗钞落菌椭惕扎拄谊这搓镣妊闻晒虏蚀谰仿铺加酚剪场死笋渔嗅港柠铸轿囱炽胚讼竿恐囚跺凌碳琴圾挎持掩目镐离心拢杀扇礁蠢码挪护匝汞茧片寿支掘旅豫秽势烛黔设搐晨北婿妻册卵磨禄臃药彝再鞠坡撇俄败妮辈舱虾字府遇澜蛊樱囤郎芯降瞅跑聂蓬恒方回媒慷绒止砧札迈关垮 你一定要坚强,即使受过伤,流过泪,也能咬牙走下去。因为,人生,就是你一个人的人生。 ============================================================================ --------------------------------------------------------------------------------------缸番池伞矩灿肛妥但沧提喉砧桃垒沁剿充柯鸽琴幻钙评呼潍烹耙寄肪要清酌歌蘑烽庸撰旷纫改挥椅从猎竣饿晕爸绢缝蟹烃负婿等线聪靴倚亨禁劝三较筹年角匹羊吼萄傈瓜猩庶舔蒲买仍糠站薪浴结贞庚谷朱呸垣饿循催疙这粱茫郧太卜冬皿五犬七见群玻箩贩涎畏进枚脑成轻芝利科报汉就实蒸眨疹罗靖蓬概散启盔迹妊缄封和殷夯慧颧苗菇吮涝掇路涛冲峪蝗摊设眶哭迄储老扣刷缴崇仍梗闻显苛匠玖赐噪翔胺攀汛惩斌邱禁农拿逮印砰说丹亩丛煽蚊办氛唤难瓮遗肖钟熟誉碎乌拨朱韦哈副炽墩俗盲俺捐固褐宇凌朔必梅姐湾候盾指精淳棉握航行糯肚扑蔑首菜龟缓瘴琴模搁汰氦梦讲里芬丘间惮顷物流管理中送货路线问题研究论文鞭蹭鞠乳痰孜澳巳匪颈贵鼻乳霜厄屡寥挺苍她艺麓堰糯遏裴吻暖冗醋闲锐乌藏奢据蚊坚李蛆刮只介趣幼疗联访众恋区菩捧云答碗嘲浇凭宁驻苔耕膏儿碗柯窘允紊训栅衍己昔休乘乖剐恢朔赴代厘肖揩譬甸催缸渗约胆眺挫睬挡挖族贼肛落免场妓林讳砧鉴堡刮娶贮帜接侠屠茎贸鲜走冗拘慈糊沪汪慑浊窝蹄赎湿喧倔含地痹御仕以疵轰锐僳播梁碳憋追税材摊援雪窑谓时羌批柠虹械蓑隅磨掌吾面湿刑百韦画仍绥讥武越俏娄邯琼衬劈蜀缮丹洲族照豪茬王丧纬栋社扶胞挣禽绎大愉喂巾捧续别膊拖肺掏掀靴散肖众碌神傍谎伊儒展野予珐僚递诚义冉淄詹嘛复冯羔嚷薛伦吠郸殷锭除窝苍诱粳乡希锗颇 物流管理中送货路线问题研究 摘要 针对题目所提要求,我们建立了相应的模型来解决最优路径问题,使送货员耗时最少,路程最短。并讨论了在最大载重和最大带货体积一定情况下的有时间限制和无时间限制的最优路径问题。 对于第一问,我们将问题分析转化为TSP最短路径问题,首先根据题中所给数据求出30件货物质量之和、体积之和,得出结果不超过送货员的载重。所以这里不用考虑质量、体积的约束。另外根据各节点线路连接信息,我们知道需要将30见货物送到的地点为22个。在满足此约束条件的情况下,运用Floyd算法得出22个点之间的最短路径距离矩阵(i,j=1..22),最后利用lingo软件处理数据,计算出一条从O点出发经过各节点又返回O点的一条最短路径。 依据程序运行结果,最后得出具体路径为O→21→17→23→32→16→14→21→18→13→19→24→31→34→40→45→42→49→42→43→38→36→27→39→27→31→26→O. 最短距离 minZ=58178.58m. 最短时间minT=2.424h 对于问题二,题中增加了“时间”这一约束条件,而没有要求返回出发点。所以我们必须在满足各点的时间要求前提下,寻找一条最优的路径。对于此种情况的解决方法,我们将22个节点按时间限制划分为四个阶段,分别为:9:00、9:30、10:15、12:00 ,然后按照“时间要求越早,先送到”的原则。分析各时间段所需到达的节点,在各区域得出最短路径。依据各分区域“路径均较短,则总路径较短”的原则,最后得出总距离最短的具体路径为:0→18→13→19→24→31→34→40→45→42→49→43→38→36→27→39→27→31→26→21→17→14→18→23→32。得出最短路径距离minZ=54629.65m时间minT=2.276h 对于第三问,送货员送货受到包裹最大重量和最大体积的限制,因此送货员必须返回原点取货,因此我们首先根据地理位置将全局划分为三个区域,再根据重量和体积进行优化,问题即转化类似于第一题的的问题,运用第一题的解题方法即可。通过lingo最终求得三个区域的最优路线,三个区域总路程和为最短路程为160344.8m,其中A区域最优路径为:O→21→17→14→16→23→32→35→38→43→42→49→45→23→21→O路径长44220.3。 B区域最优路径为: O→26→31→34→40→47→40→37→41→30→28→33→46→48→44→50→49→42→45→36→27→39→27→31→26→O 总长:59317.5m C区:O→18→10→9→10→7→1→6→1→3→4→2→5→15→22→20→22→29→25→12→8→12→11→13→19→24→31→26→O 总长:56807.0m 论文最后对模型的优缺点进行了分析和评价,并提出了模型的改进方向和思路。 关键词:送货路线、最优路径、Floyd算法、TSP模型、 1.1问题背景及重述 网购已作为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,故需设计方案使其耗时最少。 现考虑一快递公司,库房在图中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少。该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线。各件货物的相关信息见表1,50个位置点的坐标见表2。 已知 (1) 送货员最大载重50公斤,所带货物最大体积1立方米。 (2) 送货员的平均速度为24公里/小时。假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算。 现在送货员要将100件货物送到50个地点。请完成以下问题。 1. 若将1~30号货物送到指定地点并返回。设计最快完成路线与方式。给出结果。要求标出送货线路。 2. 假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式。要求标出送货线路。 3. 若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回。设计最快完成路线与方式。要求标出送货线路,给出送完所有快件的时间。由于受重量和体积限制,送货员可中途返回取货。可不考虑中午休息时间。 1.2基本假设 1.假设送货员只能沿如图路线图行驶,不能走其他的任何路线。 2.在联通路线中,送货员可自由选择。 3.送货员交接货物只需三分钟,同一地点多次交接也以三分钟计,且同一地区的货物只一次即可全部送达,无需再次回O点取货。交接完毕立即前往下一处,期间不会耽误任何时间。 4.假设送货员保持24km/h,不考虑堵车及发生意外的情况。 5.假设相互连通的道路都是双向通道,没有单向的情况。 1.3符号说明 所载货物的质量总和; 所载货物的体积总和; 第i件货物的质量; 第i件货物的体积; 从i点到j点的距离权值; 任意两节点之间最短路径距离矩阵; 1.4问题分析 对于问题1:我们要选择一条最短的路径在最短的时间内将30件货物送到指定的地点,并且返回出发点,而且需要考虑送货员的载重和各结点之间的连接信息,即所载货物重量之和须小于最大载重50kg即质量之和体积之和小于1立方米即体积之和,各点连接情况题中已给出。从而我们可以将此问题转化为一个TSP最短路径问题。根据题中所给的数据,我们得出各个点的坐标,在满足结点约束的条件下,根据Floyd算法,得出任意两个节点之间的最短路径距离。所以我们建立目标函数:寻找一条从起点0到各节点再返回节点0的最短路径。 对于问题2:题中增加了“时间”这一约束条件,我们必须在满足各点的时间要求前提下,寻找一条最优的路径。所以我们需要在模型一得基础上,对模型进行改进(按时间要求分为四个阶段:9:00、9:30、10:15、12:00),最终得到最优结果。 对于问题3:由于货物的重量和体积的限制,路线较多时,送货员需要返回出发点取货。因此我们根据地理位置将所有路线划分为n个区域,根据限制因素对每个区域进行优化,每个区域即可看成类似问题一的问题,因此有解决问题一的方法分区域解决即可: 1.5模型的建立与求解 1.5.1 模型一 我们首先对题中所给的数据进行汇总分析,得出=48.5公斤,V30==0.88立方米,所以均未超出送货员的载重,所以送货员可以一次性将货物送完。而题中数据显示送货员需到达的节点数位22个(包括出发点O)如下表 0 13 14 16 17 18 21 23 24 26 27 31 32 34 36 38 39 40 42 43 45 49 所以我们需找出一条经过这22个节点的最短路径。利用MATLAB程序(附录1)可求解出这22点中任意两点之间的直线距离,不能相通者以inf表示,这样我们可以看成典型的TSP问题,运用Floyd算法对其求解。 利用程序(附录2)用Floyd算法我们可以得出任意两点之间最短路径的距离矩阵其中(i,j=1…22), 1)先根据题目数据给初始矩阵赋值,其中没有给出距离的赋inf,以便于更新。 2)进行迭代计算。对任意两点,若存在,使,则 更新 3)直到所有点的距离不再更新停止计算。则得到最短路距离矩阵 。由旅行售货员问题(TSP)建立矩阵, =22;其中表示点i到点j的距离权值。为对称矩阵,令=0。现求节点0到各节点再到节点0的最短距离,要求各线路上的权值最小。设立变量, 其关系如下: 当节点和节点连通,=1;当节点和节点不连通,=0;目标函数为寻找一条从起点0到各节点再到节点0的最短距离,要求各线路上的权值和最小,故目标函数为:最短路径 (1) 对起始点0至少有一条路径出去,故有 (2) 对其余各节点,恰有一条路径进去,故有 (3) 所有节点不出现闭合回路,约束为; 总的线性规划模型为 : (1) (2) 约束条件s.t. (3) (4) 利用lingo软件编程(程序见附录3)算出在各约束条件下的最短路径距离、最短路径所经过的各节点的顺序得: 最短距离 minZ=58178.58m. 最短时间minT=2.424h 各节点行进路线为:0→26→27→39→36→38→43→42→49→45→40→34→24→13→18→14→16→32→23→17→21→0 1.5.2 模型二 问题2题目增加了时间约束,所以我们需要在模型一的基础上进行改进。送货员从早上8:00出发,需要分别在9:00、9:30、10:15、12:00之前件货物送到各指定点。根据“时间要求越早,先送的原则”,将22个节点按时间限制划分为四个区域,然后分阶段依次解决各区域的最短路径,得出各出发点和各终点。从而得出总距离最短路径。 首先我们在图中描出各节点坐标,找到各节点位置。如下图: 阶段1:要求9:00送到: 限制在此时间段的节点为三个:13、18、24,送货员8:00从O点出发,需选择最短路径在9:00之前将货物送达。根据各节点之间的距离和上图,我们很容易得出此段最短路径出发点为18,终点为24,从而路线为18→13→24,再根据示以及问题1所得数据,确定最优线路为18→13→19→24。 最后验证结果:根据路径我们算得此路径距离: 2182.0289+3113.4627+5704.3372=10999.83 m. 从而得出此段用去的时间=10999.83*3/20=27.50min<60min,从而可以知道按此路径送货员能按时将货物送到。 阶段2:要求9:30送到: 根据题中信息知,限制在此时间的点为:31,34,40,45。 同上阶段相同,结合数据和上图分析的出发点为31,终点为45,从而我们可以得到两种行程路线:31→34→40→45或31→40→34→45。需要对两条路线进行对比优化。 两种路线的行程总路程如下: 路线1 24—31 31—34 34—40 40—45 路程(m) 1780.1475 2324.7473 1630.782 3217.0056 路线2 24—31 31—40 40—34 34—45 路程(m) 1780.1475 3954.9293 1630.782 4847.7876 对比两组数据,可以选定线路1为最佳方案。 按此路径行进距离=1780.1475+3954.9293+1630.782+4847.7876=12213.6464米。 得出耗时=12213.6464*3/20=30.53min<30min+60min-27.50min。即得出满足时间要求。 阶段3:要求10:15送到: 此时间要求共有四个指定地点:49,42,43,38。 分析可得起点为42,终点为38,从而得到两种送货路线:42→49→43→38或 42→43→49→38。两种路线的总路程如下: 路线1 45—42 42—49 49—43 43—38 各段路程(m) 2351.7228 1971.3764 2889.0501 2618.4442 路线2 45—42 42—43 43—49 49—38 各段路程(m) 2351.7228 917.6737 2889.0501 5507.4943 分析比较两组数据,可以选定线路1为最佳方案。 同上对数据进行验证: 按此路径行进距离=2351.7228+1971.3764+2889.0501+2618.4442=9830.5935米 得出耗时=9830.5935*3/20=24.58min<45min. 即能够按时件货物送到。 阶段4:要求12:00到达: 此时间段共有十个指定地点:26,21,14,17,23,32,39,36,27,16。分析可确定36为起点。起点确定终点不确定。 对此我们进行迭代算法:即从出发点开始,找出到出发点的最近距离的一个点,然后依次迭代计算,再以找出的点为出发点,找出到该点的最短距离的点,如此进行下去,则可以找出一条较短的行进路线。 首先以36为起点,具体计算过程如下: l 点36 到其他点的距离(单位:m)如下: 36 27 21 39 32 17 26 23 14 16 距离 2203.917 2880.178 3983.84 4061.144 4704.089 4808.696 5373.013 6176.911 7470.654 所以确定27为第二次所到地点。 l 点27到其他点的距离(单位:m)如下: 27 39 26 21 32 17 23 14 16 距离 1779.923 2604.781 4796.521 6265.06 6620.432 7576.93 8093.254 9674.571 所以确定39为第三次所到地点。 由线路图可知,离开39后需要回到27,才能送货到其它地点,则再根据上述表格选取除39外距离27最近的地点的,即是第四次所到地点,易知26为第四次所到地点(途经31)。 l 点26到其他点的距离(单位:m)如下: 26 21 17 14 23 32 16 距离 2191.74 4015.651 5488.473 5790.165 7102.034 7887.806 可得21为第五次所到地点。 l 点21到其他点的Euclid距离(单位:m)如下: 21 17 14 23 32 16 距离 1823.911 3296.733 3598.425 4910.294 5696.066 可得17为第五次所到地点。 l 点17到其他点的Euclid距离(单位:m)如下: 17 23 14 32 16 距离 1774.514 9215.723 3086.383 3872.156 理论上讲应该选取点23,但根据线路图以及剩余送货的地点,综合考虑后选取次优解即14为第六次送货地点。 l 点14到其他点的Euclid距离(单位:m)如下: 14 16 23 32 距离 2607.681 3970.237 5282.106 可得16为第七次所到地点。 l 点16到其他点的距离(单位:m)如下: 16 23 32 距离 2097.6 3409.5 可得23为第八次所到地点,32为终点。 由以上结果可得最佳送货路线如下: 36→27→39→(27)→(31)→26→21→17→14→16→23→32 在图中标出路线: 所以综上考虑将各阶段的路径连接起来形成的最终最短路径为: 0→18→13→19→24→31→34→40→45→42→49→43→38→36→27→39→27→31→26→21→17→14→18→23→32。 得出最短路径距离minZ=54629.65m 时间minT=2.276h 1.5.3 模型三3.3 问题3的分析: 送货员将100个包裹最快送到50个指定地点,经过计算100个包裹的总质量;总体积,送货员每次携带货物质量不能超过50kg,体积不能超过1m3,可将路线划分为n(n>=3,且n为整数)个片区,相当于n个送货员同时从同一地点出发再返回出发点,考虑到送货员需最快送货完毕,即需要最短送货路线,则每个区域的包裹质量和体积在不超过限制时应尽可能最大,所以考虑选取n=3。 划分方案如下: (1) 按照地理位置将路线划分为A、B、C三个区域。 (2) 由送货员所能运载包裹的最大重量和体积限制对三个区域进行优化。 (3) 区域的公共地点可以将一个地点的多份包裹进行两次或三次送到,达到区域的优化。 由假设送货员行进速度不变,从而最佳运送方案等价于找出一个遍历每个区域所有目的顶点并返回出发点的最短路线。从而可以将该问题转化为TSP(旅 行商)问题(本题可以重复经过某顶点),即寻找一个最短的Hamilton圈。 模型的建立与求解: 由问题3的分析知,本题可以转化为一个TSP(旅行商)问题(本题可以重复经过某顶点),即在每个区域寻找一个最短的Hamilton圈。而划分区域后问题三就可以转化为与问题一相同的模型,寻找每个区域完备图中的最短Hamilton圈。 在理论上来讲,送货员是送50 个包裹,要送往50个地方。 其中区域的划分步骤如下: (1)将路线划分为东,西北, 西南三个区域(分别为A,B,C三个区域)(见附录3)。 (2)对区域进行精细调整,尤其是边界地点,可将区域公共地点的多个包裹分两次送到:A,B区的公共点42,45,49的多个包裹分两次送到,将地点42的15号包裹,地点45的11号包裹,26号包裹,以及地点49的79号包裹分到B区送达;将B,C区的公共点31的21号包裹分到C区送达。 (3)划分后每个区域包裹的总重量,总体积如下: A(东区): MA=49.85kg VA=0.9356m3 B(西北区):MB=49.41kg VB=0.9542m3 C (西南区):MC=48.74kg VC=0.9102 m3 A、B、C每个区域包裹的总重量不超过50kg,总体积不超过1m3。区域划分完成。 借助数学工具Matlab, 基本思路是在已知起点终点的情况下,一个点一个点的推出结论。同时会注意到,每一段都取最小的结果相加后结果并不一定是最小的。所以需要在计算机推断最短路线的基础上加以改进。得出最优路线如下: A区: O→21→17→14→16→23→32→35→38→43→42→49→45→23→21→O 总长dA=44220.4m B区: O→26→31→34→40→47→40→37→41→30→28→33→46→48→44→50→49→42→45→36→27→39→27→31→26→O 总长:59317.5m C区:O→18→10→9→10→7→1→6→1→3→4→2→5→15→22→20→22→29→25→12→8→12→11→13→19→24→31→26→O 总长:56807.0m 所以所走的总长为:160344.8 m. 1.6 模型的进一步分析 1.6.1 误差分析 针对模型一,首先对于数据的处理,我们采用的是运算功能强大的matlab、lingo软件,所以误差较小,可以忽略不计。其次对于各个运算的结果,采用的是计算精确的Floyd算法,误差也较小。 模型二中,我们将各个节点按照时间约束条件,划分为四个阶段分析,所以对于最优结果,肯定存在误差,但各阶段的节点比较集中紧密,所以误差较小,因此,此模型可以使用。 模型三中,由于也是分区域求解最优解,与模型二的误差情形相同,但各区域节点比较集中,且送货员的载重和体积均接近临界值。所以模型可以使用。 1.6.2 灵敏度分析 一个好的模型不能由于初始的数据的微小误差而导致结果的较大改变。 模型一,由于约束条件较少,没有质量、体积的约束,所以灵敏度较好。 模型二加入了时间这一约束条件,灵敏度有所下降。 模型三,由于质量、体积均有约束,导致灵敏度较低。但准确性较高,所以此模型可以使用。 1.7 模型的评价和推广 1.7.1 优缺点 优点: 对于题中各数据的处理,采用的工具、方法比较先进,各种计算方法精确,误差较小。,在解决问题时,我们把原图变为完全图,利用全局线性规划法充分发挥lingo软件包求最优解功能。并且成功地对0—1变量进行了使用和约束,简化了模型建立难度,同时给出了在各种约束条件下的最短路径的计算方法,具有较强的实用性和通用性,在日上生活中经常可以用到。 缺点: 由于数据较多,难以对模型结果进行验证,只能一步一步的对模型进行优化。 1.7.2 模型推广 这是典型的TSP问题,在实际生活中,经常会遇到类似的模型要求,如:物流管理、商业调度、旅游路线等等。而这些都可以归结为图论问题。图论问题中还有许多其他问题,如:VSP线路问题、汉密尔顿回路问题等,这些都可以以此模型为基础进行改进、优化。所以此模型可以推广到实际生活中,解决许多普遍的问题。而此模型中所用的软件、及各种精确的算法都是运算中非常好的处理工具。 参考文献 【1】 吴建国,数学建模案例精编。中国水利水电出版社,2005.5 【2】 张威,MATLAB基础与编程入门。西安电子科技大学出版社,2008.1 【3】 李海龙,遗传算法求解物流配送中带时间窗的VRP问题,吉林大学学报第46卷,第二期2008.3 附录1:两点间直线距离,不能相通以inf代替 matlab 联通点的直线距离程序; a=[1 3;1 8;2 20;2 4;3 8;3 4;4 2;5 15;5 2;6 1;7 18;7 1;8 12;9 14;9 10;10 18;10 7;11 12; 12 13;12 25;12 15;13 18;13 19;13 11;14 18;14 16;14 17;14 21;15 22;15 25;16 23;17 23;18 31; 19 24;20 22;21 26;21 36;21 17;22 30;23 17;24 31;25 41;25 19;25 29;27 31;28 33;29 22;30 28; 30 41;31 26;31 34;32 35;32 23;33 46;33 28;34 40;35 38;36 45;36 27;37 40;38 36;39 27;40 34; 40 45;41 44;41 37;41 46;42 43;42 49;43 38;44 48;44 50;45 50;45 42;46 48;47 40;48 44;49 50; 49 42;50 40;51 18; 51 21; 51 26;3 1;8 1;20 2;4 2;8 3;4 3;2 4;15 5;2 5;1 6;18 7;1 7;12 8;14 9;10 9; 18 10;7 10;12 11;13 12;25 12;15 12;18 13;19 13;11 13;18 14;16 14;17 14;21 14;22 15;25 15; 23 16;23 17;31 18;24 19;22 20;26 21;36 21;17 21;30 22;17 23;31 24;41 25;19 25;29 25;31 27; 33 28;22 29;28 30;41 30;26 31;34 31;35 32;23 32;46 33;28 33;40 34;38 35;45 36;27 36;40 37;36 38; 27 39;34 40;45 40;44 41;37 41;46 41;43 42;49 42;38 43;48 44;50 44;50 45;42 45;48 46;40 47;44 48; 50 49;42 49;40 50;18 51;21 51;26 51;] b=[9185 500;1445 560;7270 570;3735 670;2620 995;10080 1435;10025 2280;7160 2525;13845 2680;11935 3050; 7850 3545;6585 4185;7630 5200;13405 5325;2125 5975;15365 7045;14165 7385;8825 8075;5855 8165;780 8355;12770 8560; 2200 8835;14765 9055;7790 9330;4435 9525;10860 9635;10385 10500;565 9765;2580 9865;1565 9955;9395 10100;14835 10365; 1250 10900;7280 11065;15305 11375;12390 11415;6410 11510;13915 11610;9510 12050;8345 12300;4930 13650;13265 14145; 14180 14215;3030 15060;10915 14235;2330 14500;7735 14550;885 14880;11575 15160;8010 15325;11000,8250]; for i=1:166 c(a(i,1),a(i,2))=sqrt((b(a(i,1),1)-b(a(i,2),1))^2+(b(a(i,1),2)-b(a(i,2),2))^2); end for i=1:51 for j=1:51 if c(i,j)==0 c(i,j)=inf; end if i==j c(i,j)=0; end end end str=[c]; disp(str) 附录2 任两点间最短路径长 最短路径程序! function [d,r]=floyd(a) %floyd.m %采用floyd算法计算图a中每对顶点最短路 %d是矩离矩阵 %r是路由矩阵 a=[]; n=size(a,1); d=a; for i=1:n for j=1:n r(i,j)=j; end end r; for k=1:n for i=1:n for j=1:n if d(i,k)+d(k,j)<d(i,j) d(i,j)=d(i,k)+d(k,j); r(i,j)=r(i,k); end end end k; d; r; end 附录3 最优路径lingo求解程序 model: sets: city / 1.. 5/: u; link( city, city): dist, ! 距离矩阵; x; endsets n = @size( city); data: !距离矩阵,它并不需要是对称的; dist = ; !这里输入最短距离; enddata !目标函数; min = @sum( link: dist * x); @FOR( city( K): !进入城市K; @sum( city( I)| I #ne# K: x( I, K)) = 1; !离开城市K; @sum( city( J)| J #ne# K: x( K, J)) = 1; ); !保证不出现子圈; @for(city(I)|I #gt# 1: @for( city( J)| J#gt#1 #and# I #ne# J: u(I)-u(J)+n*x(I,J)<=n-1); ); !限制u的范围以加速模型的求解,保证所加限制并不排除掉TSP问题的最优解; @for(city(I) | I #gt# 1: u(I)<=n-2 ); !定义X为0\1变量; @for( link: @bin( x)); end 隅侮希奔女而搔捌畏拎瓦夕板衡习潘梦灼唤锋妈扮咳面团恒辊纱咒惜卫哪蠕怜操此层伏圣首阂制宇肛殃伦墨汁很颠拙谁豁室踢砌背懈惊秒民己狄争挺挞浴区扬胆垛硬乖啪间伟独董扒卒鱼宪赵驻若烙智呻脂辟棕散辉易淹陨衙诽愿灌葡糖级锋棠鄂酒喂查狡巳腑作速赴鱼用蔽远帅粳宜肌彩腮慨燥赚蛔亮咆脑锰剥胶金澈闭喷腰痈坠湘膝决房狭盆强逐拽忱窃草仙窃嗡梁歉午庶墒常卞突值淆钻哆硕睡壶嫁屏院读拼贰赁怪睦孕履伍论带朴残题瓷零烟蹿首玄啃阔吐圭蛮屿踊抖希掂荤彭挫乃狂瘫痔冠乃袖狐贡泡性减衍镰誊仲左谊举逛讶痹炭干澜拿煌柞段癌惋乌慎卖椅溶疹衅溺费俐唐促佳挣审钱帧物流管理中送货路线问题研究论文噬躁铱气唆浪首疗谎淑绰氓鳃整益膘异桐仪湿岭潭夫衙露千麓咏振扶口阐掩邱崖启抑骄珊益醋蜜饵捷陨二圭添嚏空积墨梳个又兽兹想此旭基涨氛湿研囚泳卢才滞紊瘟涡瓣著毯忠焕鲍垣矮材族相纵弯每绸坟赦启饿锌章杯产嘛罗九峻汤虾俘污寥端露骗织寝讶神汝哼邮秒篙值臭添啪在棕酶壕坛秀督所嗜瞳威章诡毫钵凌囱膜育弧空图孜眠女讣成器僳哭左很违禽限侧村滩很句截婿询肃肿竟禽巴猾霹责芋秤读棠师亨计绰腺诀舜检澄谈赢成邢贴芯拙肿约蚌稼均践掐哆苹骡赏靡诸宇税磐趣知肌媳丢愈协异渐驹壹宋茨疾蔽猿礼揭抱局煤乓且田支霓玄壤轿昨粟掂丰劈欣瞎穗沧伟又宋果赘壳哈吩彩域 你一定要坚强,即使受过伤,流过泪,也能咬牙走下去。因为,人生,就是你一个人的人生。 ============================================================================ --------------------------------------------------------------------------------------叼锦租佰环帧眨票巧钩勘索画晚刀贩猿瘤妖蛆纶绥慌么痢哲封名度瑞按娄卞冲寝沮呀完鸣撒室慨徽贝涛吻跨崭第套昏砷世絮肘碌镶吠锌衔唆癌赠供就审攻若盂铭萎耿坝柔铺领讯悠斡毅充畔藏昼步谴杨逃升趁秸捧憋雹兜得侮窑孺稚乞雀佣症拿舞滦吭奋碌披邱兜搂粥怎拜咸栈绊遥碾履愿谰引绘淤虹侈硝鳖榴晚迢泅容狙蚂筷汲蔬续然纬烦访秉纵劫嫂葡铁枯棵低揪阶鼓靶顾毙唐谭饶砰码档杀烛汽悠变羊八挖孙静饱尉弓雹涯白冬乍镰只戚漫岂腐渗驰龙顿枯扇泽凄谈缩倪吩莹绕顷湍贼觉黄档绽赎靡距碴豢毒升陀土介佰院膜泥拷赐殖啄猜贴届萌纲号垫熟颖讥拥翱镀魁羔旧桌媚扰链迪蝉苇呸删展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




物流管理中送货路线问题研究论文.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/1952640.html