2025年备战中考数学平行四边形培优易错试卷练习含答案及详细答案2.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2025 备战 中考 数学 平行四边形 培优易错 试卷 练习 答案 详细
- 资源描述:
-
备战中考数学 平行四边形 培优易错试卷练习(含答案)及详细答案 一、平行四边形 1.(1)、动手操作: 如图①:将矩形纸片ABCD折叠,使点D与点B重叠,点C落在点处,折痕为EF,若∠ABE=20°,那么度数为 . (2)、观测发现: 小明将三角形纸片ABC(AB>AC)沿过点A直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重叠,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请阐明理由. (3)、实践与运用: 将矩形纸片ABCD按如下环节操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重叠,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF大小. 【答案】(1)125°;(2)同意;(3)60° 【解析】 试题分析:(1)根据直角三角形两个锐角互余求得∠AEB=70°,根据折叠重叠角相等,得∠BEF=∠DEF=55°,根据平行线性质得到∠EFC=125°,再根据折叠性质得到∠EFC′=∠EFC=125°; (2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形; (3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可. 试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°, ∴∠AEB=70°, ∴∠BED=110°, 根据折叠重叠角相等,得∠BEF=∠DEF=55°. ∵AD∥BC, ∴∠EFC=125°, 再根据折叠性质得到∠EFC′=∠EFC=125°.; (2)、同意,如图,设AD与EF交于点G 由折叠知,AD平分∠BAC,因此∠BAD=∠CAD. 由折叠知,∠AGE=∠DGE=90°, 因此∠AGE=∠AGF=90°, 因此∠AEF=∠AFE. 因此AE=AF, 即△AEF为等腰三角形. (3)、由题意得出:∠NMF=∠AMN=∠MNF, ∴MF=NF, 由折叠可知,MF=PF, ∴NF=PF, 而由题意得出:MP=MN, 又∵MF=MF, ∴△MNF≌△MPF, ∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°, 即3∠MNF=180°, ∴∠MNF=60°. 考点:1.折叠性质;2.等边三角形性质;3.全等三角形判定和性质;4.等腰三角形判定 2.如图1,正方形ABCD一边AB在直尺一边所在直线MN上,点O是对角线AC、BD交点,过点O作OE⊥MN于点E. (1)如图1,线段AB与OE之间数量关系为 .(请直接填结论) (2)保证点A一直在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F. ①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样数量关系?请阐明理由. ②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论与否仍然成立呢?若成立,请直接写出结论;若不成立,请写出变化后结论并证明. ③当正方形ABCD绕点A旋转到如图4位置时,线段AF、BF与OE之间数量关系为 .(请直接填结论) 【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF﹣AF=2OE, 【解析】 试题分析:(1)运用直角三角形斜边中线等于斜边二分之一即可得出结论; (2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形对边相等可得EF=BH,BF=HE,根据正方形对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角余角相等求出∠AOE=∠OBH,然后运用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证; ②过点B作BH⊥OE交OE延长线于H,可得四边形BHEF是矩形,根据矩形对边相等可得EF=BH,BF=HE,根据正方形对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角余角相等求出∠AOE=∠OBH,然后运用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证; ③同②措施可证. 试题解析:(1)∵AC,BD是正方形对角线, ∴OA=OC=OB,∠BAD=∠ABC=90°, ∵OE⊥AB, ∴OE=AB, ∴AB=2OE, (2)①AF+BF=2OE 证明:如图2,过点B作BH⊥OE于点H ∴∠BHE=∠BHO=90° ∵OE⊥MN,BF⊥MN ∴∠BFE=∠OEF=90° ∴四边形EFBH为矩形 ∴BF=EH,EF=BH ∵四边形ABCD为正方形 ∴OA=OB,∠AOB=90° ∴∠AOE+∠HOB=∠OBH+∠HOB=90° ∴∠AOE=∠OBH ∴△AEO≌△OHB(AAS) ∴AE=OH,OE=BH ∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE. ②AF﹣BF=2OE 证明:如图3,延长OE,过点B作BH⊥OE于点H ∴∠EHB=90° ∵OE⊥MN,BF⊥MN ∴∠AEO=∠HEF=∠BFE=90° ∴四边形HBFE为矩形 ∴BF=HE,EF=BH ∵四边形ABCD是正方形 ∴OA=OB,∠AOB=90° ∴∠AOE+∠BOH=∠OBH+∠BOH ∴∠AOE=∠OBH ∴△AOE≌△OBH(AAS) ∴AE=OH,OE=BH, ∴AF﹣BF =AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE ③BF﹣AF=2OE, 如图4,作OG⊥BF于G,则四边形EFGO是矩形, ∴EF=GO,GF=EO,∠GOE=90°, ∴∠AOE+∠AOG=90°. 在正方形ABCD中,OA=OB,∠AOB=90°, ∴∠AOG+∠BOG=90°, ∴∠AOE=∠BOG. ∵OG⊥BF,OE⊥AE, ∴∠AEO=∠BGO=90°. ∴△AOE≌△BOG(AAS), ∴OE=OG,AE=BG, ∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF, ∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE, ∴BF﹣AF=2OE. 3.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动. (1)如图1,当b=2a,点M运动到边AD中点时,请证明∠BMC=90°; (2)如图2,当b>2a时,点M在运动过程中,与否存在∠BMC=90°,若存在,请给与证明;若不存在,请阐明理由; (3)如图3,当b<2a时,(2)中结论与否仍然成立?请阐明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】 试题分析:(1)由b=2a,点M是AD中点,可得AB=AM=MD=DC=a,又由四边形ABCD是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°; (2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等实数根,且两根均不小于零,符合题意; (3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0根状况,即可求得答案. 试题解析:(1)∵b=2a,点M是AD中点, ∴AB=AM=MD=DC=a, 又∵在矩形ABCD中,∠A=∠D=90°, ∴∠AMB=∠DMC=45°, ∴∠BMC=90°. (2)存在, 理由:若∠BMC=90°, 则∠AMB+∠DMC=90°, 又∵∠AMB+∠ABM=90°, ∴∠ABM=∠DMC, 又∵∠A=∠D=90°, ∴△ABM∽△DMC, ∴, 设AM=x,则, 整理得:x2﹣bx+a2=0, ∵b>2a,a>0,b>0, ∴△=b2﹣4a2>0, ∴方程有两个不相等实数根,且两根均不小于零,符合题意, ∴当b>2a时,存在∠BMC=90°, (3)不成立. 理由:若∠BMC=90°, 由(2)可知x2﹣bx+a2=0, ∵b<2a,a>0,b>0, ∴△=b2﹣4a2<0, ∴方程没有实数根, ∴当b<2a时,不存在∠BMC=90°,即(2)中结论不成立. 考点:1、相似三角形判定与性质;2、根鉴别式;3、矩形性质 4.问题发现: ()如图①,点为平行四边形内一点,请过点画一条直线,使其同步平分平行四边形面积和周长. 问题探究: ()如图②,在平面直角坐标系中,矩形边、分别在轴、轴正半轴上,点 坐标为.已知点为矩形外一点,请过点画一条同步平分矩形面积和周长直线,阐明理由并求出直线,阐明理由并求出直线被矩形截得线段长度. 问题处理: ()如图③,在平面直角坐标系中,矩形边、分别在轴、轴正半轴上,轴,轴,且,,点为五边形内一点.请问:与否存在过点直线,分别与边与交于点、,且同步平分五边形面积和周长?若存在,祈求出点和点坐标:若不存在,请阐明理由. 【答案】(1)作图见解析;(2),;(3),. 【解析】 试题分析:(1)连接AC、BD交于点O,作直线PO,直线PO将平行四边形ABCD面积和周长分别相等两部分. (2)连接AC,BD交于点,过、P点直线将矩形ABCD面积和周长分为分别相等两部分. (3)存在,直线平分五边形面积、周长. 试题解析:()作图如下: ()∵,, ∴设, ,, ∴, 交轴于, 交于, . ()存在,直线平分五边形面积、周长. ∵在直线上, ∴连交、于点、, 设,, ,, ∴直线, 联立,得, ∴,. 5.在图1中,正方形ABCD边长为a,等腰直角三角形FAE斜边AE=2b,且边AD和AE在同一直线上. 操作示例 当2b<a时,如图1,在BA上选用点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD位置构成四边形FGCH. 思考发现 小明在操作后发现:该剪拼措施就是先将△FAG绕点F逆时针旋转90°到△FEH位置,易知EH与AD在同一直线上.连结CH,由剪拼措施可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD位置.这样,对于剪拼得到四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),运用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形判定措施,可以判断出四边形FGCH是正方形. 实践探究 (1)正方形FGCH面积是 ;(用含a, b式子表达) (2)类比图1剪拼措施,请你就图2—图4三种情形分别画出剪拼成一种新正方形示意图. 联想拓展 小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选用点G位置在BA方向上伴随b增大不停上移.当b>a时(如图5),能否剪拼成一种正方形?若能,请你在图5中画出剪拼成正方形示意图;若不能,简要阐明理由. 【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析. 【解析】分析:实践探究:根据正方形FGCH面积=BG2+BC2进而得出答案; 应采用类比措施,注意无论等腰直角三角形大小怎样变化,BG永远等于等腰直角三角形斜边二分之一.注意当b=a时,也可直接沿正方形对角线分割. 详解:实践探究:正方形面积是:BG2+BC2=a2+b2; 剪拼措施如图2-图4; 联想拓展:能, 剪拼措施如图5(图中BG=DH=b). . 点睛:本题考察了几何变换综合,培养学生推理论证能力和动手操作能力;运用类比措施作图时,应根据范例抓住作图关键:作线段长度与某条线段比值永远相等,旋转三角形,连接点都应是相似. 6.如图①,四边形是知形,,点是线段上一动点(不与重叠),点是线段延长线上一动点,连接交于点.设,已知与之间函数关系如图②所示. (1)求图②中与函数体现式; (2)求证:; (3)与否存在值,使得是等腰三角形?假如存在,求出值;假如不存在,阐明理由 【答案】(1)y=﹣2x+4(0<x<2);(2)见解析;(3)存在,x=或或. 【解析】 【分析】 (1)运用待定系数法可得y与x函数体现式; (2)证明△CDE∽△ADF,得∠ADF=∠CDE,可得结论; (3)分三种状况: ①若DE=DG,则∠DGE=∠DEG, ②若DE=EG,如图①,作EH∥CD,交AD于H, ③若DG=EG,则∠GDE=∠GED, 分别列方程计算可得结论. 【详解】 (1)设y=kx+b, 由图象得:当x=1时,y=2,当x=0时,y=4, 代入得:,得, ∴y=﹣2x+4(0<x<2); (2)∵BE=x,BC=2 ∴CE=2﹣x, ∴, ∴, ∵四边形ABCD是矩形, ∴∠C=∠DAF=90°, ∴△CDE∽△ADF, ∴∠ADF=∠CDE, ∴∠ADF+∠EDG=∠CDE+∠EDG=90°, ∴DE⊥DF; (3)假设存在x值,使得△DEG是等腰三角形, ①若DE=DG,则∠DGE=∠DEG, ∵四边形ABCD是矩形, ∴AD∥BC,∠B=90°, ∴∠DGE=∠GEB, ∴∠DEG=∠BEG, 在△DEF和△BEF中, , ∴△DEF≌△BEF(AAS), ∴DE=BE=x,CE=2﹣x, ∴在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2, x=; ②若DE=EG,如图①,作EH∥CD,交AD于H, ∵AD∥BC,EH∥CD, ∴四边形CDHE是平行四边形, ∴∠C=90°, ∴四边形CDHE是矩形, ∴EH=CD=1,DH=CE=2﹣x,EH⊥DG, ∴HG=DH=2﹣x, ∴AG=2x﹣2, ∵EH∥CD,DC∥AB, ∴EH∥AF, ∴△EHG∽△FAG, ∴, ∴, ∴(舍), ③若DG=EG,则∠GDE=∠GED, ∵AD∥BC, ∴∠GDE=∠DEC, ∴∠GED=∠DEC, ∵∠C=∠EDF=90°, ∴△CDE∽△DFE, ∴, ∵△CDE∽△ADF, ∴, ∴, ∴2﹣x=,x=, 综上,x=或或. 【点睛】 本题是四边形综合题,重要考察了待定系数法求一次函数解析式,三角形相似和全等性质和判定,矩形和平行四边形性质和判定,勾股定理和逆定理等知识,运用相似三角形性质是处理本题关键. 7.如图所示,矩形ABCD中,点E在CB延长线上,使CE=AC,连接AE,点F是AE中点,连接BF、DF,求证:BF⊥DF. 【答案】见解析. 【解析】 【分析】 延长BF,交DA延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一性质即可求证BF⊥DF. 【详解】 延长BF,交DA延长线于点M,连接BD. ∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM. ∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD. ∵CE=AC,∴AC=CE= BD =DM. ∵FB=FM,∴BF⊥DF. 【点睛】 本题考察了矩形性质,全等三角形判定和对应边相等性质,等腰三角形三线合一性质,本题中求证DB=DM是解题关键. 8.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG. (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG. (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC面积为8,菱形CEFG面积是_______.(只填成果) 【答案】见解析 【解析】 试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,运用SAS易证得△BCE≌△DCG,则可得BE=DG; 应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE面积,继而求得答案. 试题解析: 探究:∵四边形ABCD、四边形CEFG均为菱形, ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F. ∵∠A=∠F, ∴∠BCD=∠ECG. ∴∠BCD-∠ECD=∠ECG-∠ECD, 即∠BCE=∠DCG. 在△BCE和△DCG中, ∴△BCE≌△DCG(SAS), ∴BE=DG. 应用:∵四边形ABCD为菱形, ∴AD∥BC, ∵BE=DG, ∴S△ABE+S△CDE=S△BEC=S△CDG=8, ∵AE=3ED, ∴S△CDE= , ∴S△ECG=S△CDE+S△CDG=10 ∴S菱形CEFG=2S△ECG=20. 9.如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P作PE⊥PC交直线AB于E. (1) 求证:PC=PE; (2) 延长AP交直线CD于点F. ①如图2,若点F是CD中点,求△APE面积; ②若ΔAPE面积是,则DF长为 (3) 如图3,点E在边AB上,连接EC交BD于点M,作点E有关BD对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=,则△MNQ面积是 【答案】(1)略;(2)①8,②4或9;(3) 【解析】 【分析】 (1)运用正方形每个角都是90°,对角线平分对角性质,三角形外角等于和它不相邻两个内角和,等角对等边等性质容易得证; (2)作出△ADP和△DFP高,由面积法容易求出这个高值.从而得到△PAE底和高,并求出面积.第2小问思绪同样,通过面积法列出方程求解即可; (3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积二分之一可得其面积. 【详解】 (1) 证明:∵点P在对角线BD上, ∴△ADP≌△CDP, ∴AP=CP, ∠DAP =∠DCP, ∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°, ∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC, ∵∠PAE=90°-∠DAP=90°-∠DCP, ∠DCP=∠BPC-∠PDC=∠BPC-45°, ∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC, ∴∠PEA=∠PAE, ∴PC=PE; (2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点M. ∵四边形ABCD是正方形,P在对角线上, ∴四边形HPGD是正方形, ∴PH=PG,PM⊥AB, 设PH=PG=a, ∵F是CD中点,AD=6,则FD=3,=9, ∵==, ∴,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4, 又∵PA=PE, ∴AM=EM,AE=4, ∵=, ②设HP=b,由①可得AE=2b,MP=6-b, ∴=, 解得b=2.4, ∵==, ∴, ∴当b=2.4时,DF=4;当b=3.6时,DF=9, 即DF长为4或9; (3)如图, ∵E、Q有关BP对称,PN∥CD, ∴∠1=∠2,∠2+∠3=∠BDC=45°, ∴∠1+∠4=45°, ∴∠3=∠4, 易证△PEM≌△PQM, △PNQ≌△PNC, ∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC, ∴∠6+∠7=90°, ∴△MNQ是直角三角形, 设EM=a,NC=b列方程组 , 可得ab=, ∴, 【点睛】 本题是四边形综合题目,考察了正方形性质、等腰直角三角形判定与性质、全等三角形判定与性质等知识;本题综合性强,有一定难度,纯熟掌握正方形性质,证明三角形全等是处理问题关键.要注意运用数形结合思想. 10.如图,抛物线y=mx2+2mx+n通过A(﹣3,0),C(0,﹣)两点,与x轴交于另一点B. (1)求通过A,B,C三点抛物线解析式; (2)过点C作CE∥x轴交抛物线于点E,写出点E坐标,并求AC、BE交点F坐标 (3)若抛物线顶点为D,连结DC、DE,四边形CDEF与否为菱形?若是,请证明;若不是,请阐明理由. 【答案】(1)y=x2+x﹣;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析 【解析】 【分析】 将A、C点坐标代入抛物线解析式中,通过联立方程组求得该抛物线解析式; 根据(1)题所得抛物线解析式,可确定抛物线对称轴方程以及B、C点坐标,由CE∥x轴,可知C、E有关对称轴对称。根据A、C点求得直线AC解析式,根据B、E点求出直线BE解析式,联立方程求得解,即为F点坐标; 由E、C、F、D坐标可知DF和EC互相垂直平分,则可判定四边形CDEF为菱形. 【详解】 (1)∵抛物线y=mx2+2mx+n通过A(﹣3,0),C(0,﹣)两点, ∴,解得, ∴抛物线解析式为y=x2+x﹣; (2)∵y=x2+x﹣, ∴抛物线对称轴为直线x=﹣1, ∵CE∥x轴, ∴C、E有关对称轴对称, ∵C(0,﹣), ∴E(﹣2,﹣), ∵A、B有关对称轴对称, ∴B(1,0), 设直线AC、BE解析式分别为y=kx+b,y=k′x+b′, 则由题意可得,, 解得,, ∴直线AC、BE解析式分别为y=﹣x﹣,y=x﹣, 联立两直线解析式可得,解得, ∴F点坐标为(﹣1,﹣1); (3)四边形CDEF是菱形. 证明:∵y=x2+x﹣=(x+1)2﹣2, ∴D(﹣1,﹣2), ∵F(﹣1,﹣1), ∴DF⊥x轴,且CE∥x轴, ∴DF⊥CE, ∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2), ∴DF和CE互相平分, ∴四边形CDEF是菱形. 【点睛】 本题考察菱形判定措施,二次函数性质,以及二次函数与二元一次方程组. 11.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB延长线于F. 求证:AE=AF. 【答案】见解析 【解析】 【分析】 根据同角余角相等证得∠BAF=∠DAE,再运用正方形性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形性质即可证得AF=AE. 【详解】 ∵AF⊥AE, ∴∠BAF+∠BAE=90°, 又∵∠DAE+∠BAE=90°, ∴∠BAF=∠DAE, ∵四边形ABCD是正方形, ∴AB=AD,∠ABF=∠ADE=90°, 在△ABF和△ADE中, , ∴△ABF≌△ADE(ASA), ∴AF=AE. 【点睛】 本题重要考察了正方形性质、全等三角形判定和性质等知识点,证明△ABF≌△ADE是处理本题关键. 12.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上点F处,过点F作FG∥CD,交AE于点G,连接DG. (1)求证:四边形DEFG为菱形; (2)若CD=8,CF=4,求值. 【答案】(1)证明见试题解析;(2). 【解析】 试题分析:(1)由折叠性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形; (2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出值. 试题解析:(1)由折叠性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形; (2)设DE=x,根据折叠性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=. 考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形判定与性质;4.矩形性质;5.综合题. 13.如图1,若分别以△ABCAC、BC两边为边向外侧作四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形. (1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF面积相等. (2)引申:假如∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请阐明理由; (3)运用:如图3,分别以△ABC三边为边向外侧作四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分面积和有最大值是________. 【答案】(1)证明见解析;(2)成立,证明见解析;(3)18. 【解析】 试题分析:(1)由于AC=DC,∠ACB=∠DCF=90°,BC=FC,因此△ABC≌△DFC,从而△ABC与△DFC面积相等; (2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.因此△APC≌△DQC. 于是AP=DQ.又由于S△ABC=BC•AP,S△DFC=FC•DQ,因此S△ABC=S△DFC; (3)根据(2)得图中阴影部分面积和是△ABC面积三倍,若图中阴影部分面积和有最大值,则三角形ABC面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大.因此S阴影部分面积和=3S△ABC=3××3×4=18. (1)证明:在△ABC与△DFC中, ∵, ∴△ABC≌△DFC. ∴△ABC与△DFC面积相等; (2)解:成立.理由如下: 如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q. ∴∠APC=∠DQC=90°. ∵四边形ACDE,BCFG均为正方形, ∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°, ∴∠ACP=∠DCQ. ∴, △APC≌△DQC(AAS), ∴AP=DQ. 又∵S△ABC=BC•AP,S△DFC=FC•DQ, ∴S△ABC=S△DFC; (3)解:根据(2)得图中阴影部分面积和是△ABC面积三倍, 若图中阴影部分面积和有最大值,则三角形ABC面积最大, ∴当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大. ∴S阴影部分面积和=3S△ABC=3××3×4=18. 考点:四边形综合题 14.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力有效途径.下面是一案例,请同学们认真阅读、研究,完毕“类比猜想”问题. 习题 如图(1),点E、F分别在正方形ABCD边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,阐明理由. 解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°, ∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上. ∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF ∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF. 类比猜想: (1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,尚有EF=BE+DF吗?请阐明理由. (2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请阐明理由. 【答案】证明见解析. 【解析】 试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转性质得到AE=AE′,∠EAF=∠E′AF,运用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,因此DE′+DF>EF,即由BE+DF>EF; (2)把△ABE绕点A逆时针旋转∠BAD度数至△ADE′,如图(3),根据旋转性质得到AE′=AE,∠EAF=∠E′AF,然后运用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面条件和结论可归纳出结论. 试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF. 理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°, ∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°, ∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F, ∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°, ∴∠2+∠3=60°, ∴∠EAF=∠E′AF, 在△AEF和△AE′F中 , ∴△AEF≌△AE′F(SAS), ∴EF=E′F, ∵∠ADE′+∠ADC=120°,即点F、D、E′不共线, ∴DE′+DF>EF ∴BE+DF>EF; (2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立. 理由如下:如图(3), ∵AB=AD, ∴把△ABE绕点A逆时针旋转∠BAD度数至△ADE′,如图(3), ∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B, ∵∠B+∠D=180°, ∴∠ADE′+∠D=180°, ∴点F、D、E′共线, ∵∠EAF=∠BAD, ∴∠1+∠2=∠BAD, ∴∠2+∠3=∠BAD, ∴∠EAF=∠E′AF, 在△AEF和△AE′F中 , ∴△AEF≌△AE′F(SAS), ∴EF=E′F, ∴EF=DE′+DF=BE+DF; 归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF. 考点:四边形综合题. 15.如图,正方形ABCO边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED延长线交线段BC于点P,连AP、AG. (1)求证:△AOG≌△ADG; (2)求∠PAG度数;并判断线段OG、PG、BP之间数量关系,阐明理由; (3)当∠1=∠2时,求直线PE解析式; (4)在(3)条件下,直线PE上与否存在点M,使以M、A、G为顶点三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请阐明理由. 【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、. 【解析】 试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等判定措施,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG度数;最终判断出线段OG、PG、BP之间数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最终确定出P、G两点坐标,即可判断出直线PE解析式. (4)根据题意,分两种状况:①当点M在x轴负半轴上时;②当点M在EP延长线上时;根据以M、A、G为顶点三角形是等腰三角形,求出M点坐标是多少即可. 试题解析:(1)在Rt△AOG和Rt△ADG中,(HL) ∴△AOG≌△ADG. (2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP, 则∠DAP=∠BAP; ∵△AOG≌△ADG, ∴∠1=∠DAG; 又∵∠1+∠DAG+∠DAP+∠BAP=90°, ∴2∠DAG+2∠DAP=90°, ∴∠DAG+∠DAP=45°, ∵∠PAG=∠DAG+∠DAP, ∴∠PAG=45°; ∵△AOG≌△ADG, ∴DG=OG, ∵△ADP≌△ABP, ∴DP=BP, ∴PG=DG+DP=OG+BP. (3)解:∵△AOG≌△ADG, ∴∠AGO=∠AGD, 又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2, ∴∠AGO=∠PGC, 又∵∠AGO=∠AGD, ∴∠AGO=∠AGD=∠PGC, 又∵∠AGO+∠AGD+∠PGC=180°, ∴∠AGO=∠AGD=∠PGC=180°÷3=60°, ∴∠1=∠2=90°﹣60°=30°; 在Rt△AOG中, ∵AO=3, ∴OG=AOtan30°=3×=, ∴G点坐标为(,0),CG=3﹣, 在Rt△PCG中,PC===3(﹣1), ∴P点坐标为:(3,3﹣3 ), 设直线PE解析式为:y=kx+b, 则, 解得:, ∴直线PE解析式为y=x﹣3. (4)①如图1,当点M在x轴负半轴上时,, ∵AG=MG,点A坐标为(0,3), ∴点M坐标为(0,﹣3). ②如图2,当点M在EP延长线上时,, 由(3),可得∠AGO=∠PGC=60°, ∴EP与AB交点M,满足AG=MG, ∵A点横坐标是0,G点横坐标为, ∴M横坐标是2,纵坐标是3, ∴点M坐标为(2,3). 综上,可得 点M坐标为(0,﹣3)或(2,3). 考点:几何变换综合题.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2025年备战中考数学平行四边形培优易错试卷练习含答案及详细答案2.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/13012891.html