江苏省盐城中学2025-2026学年高一数学第一学期期末经典试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 盐城 中学 2025 2026 学年 数学 第一 学期 期末 经典 试题 解析
- 资源描述:
-
江苏省盐城中学2025-2026学年高一数学第一学期期末经典试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:)如图所示,则该壁画的扇面面积约为() A. B. C. D. 2.若某商店将进货单价为6元的商品按每件10元出售,则每天可销售100件.现准备采用提高售价、减少进货量的方法来增加利润.已知这种商品的售价每提高1元,销售量就要减少10件,那么要保证该商品每天的利润在450元以上,售价的取值范围是() A. B. C. D. 3.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是 A. B. C. D. 4.已知奇函数在上是增函数,若,,,则的大小关系为 A. B. C. D. 5.若斜率为2的直线经过,,三点,则a,b的值是 A., B., C., D., 6.逻辑斯蒂函数二分类的特性在机器学习系统,可获得一个线性分类器,实现对数据的分类.下列关于函数的说法错误的是() A.函数的图象关于点对称 B.函数的值域为(0,1) C.不等式的解集是 D.存在实数a,使得关于x的方程有两个不相等的实数根 7.下列各组中的两个函数表示同一函数的是( ) A. B.y=lnx2,y=2lnx C D. 8.在中,为边的中点,则() A. B. C. D. 9.下列四组函数中,表示同一个函数的一组是( ) A., B., C., D., 10.在中,,.若点满足,则() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.计算______. 12.函数在上的最小值是__________ 13.函数是幂函数且为偶函数,则m的值为_________ 14.若将函数的图象向左平移个单位长度,得到函数的图象,则的最小值为______ 15.已知函数,又有定义在R上函数满足:(1), ,均恒成立; (2)当时,,则_____, 函数在区间中的所有零点之和为_______. 16.已知,则的值是________,的值是________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知为锐角,, (1)求和的值; (2)求和的值 18.如图,直三棱柱中,分别是的中点,. (1)证明:平面; (2)证明:平面平面. 19.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中 随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示. (1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者? (2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率. 20.已知定义在上的函数,其中,且 (1)试判断函数的奇偶性,并证明你的结论; (2)解关于的不等式 21.已知实数,定义域为的函数是偶函数,其中为自然对数的底数 (Ⅰ)求实数值; (Ⅱ)判断该函数在上的单调性并用定义证明; (Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】利用扇形的面积公式,利用大扇形面积减去小扇形面积即可. 【详解】如图,设,,由弧长公式可得解得,,设扇形,扇形的面积分别为,则该壁画的扇面面积约为 . 故选:. 2、B 【解析】根据题意列出函数关系式,建立不等式求解即可. 【详解】设售价为,利润为, 则, 由题意, 即, 解得, 即售价应定为元到元之间, 故选:B. 3、C 【解析】先由三角函数的最值得或,再由得,进而可得单调增区间. 【详解】因为对任意恒成立,所以, 则或, 当时,,则(舍去), 当时,,则,符合题意, 即, 令,解得,即的单调递增区间是;故选C. 【点睛】本题主要考查了三角函数的图像和性质,利用三角函数的性质确定解析式,属于中档题. 4、C 【解析】由题意:, 且:, 据此:, 结合函数的单调性有:, 即. 本题选择C选项. 【考点】 指数、对数、函数的单调性 【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式. 5、C 【解析】根据两点间斜率公式列方程解得结果. 【详解】斜率为直线经过,,三点,∴,解得,.选C. 【点睛】本题考查两点间斜率公式,考查基本求解能力,属基础题. 6、D 【解析】A选项,代入,计算和,可得对称性;B选项,由和分式函数值域可求出结果;CD选项,判断函数的单调性即可判断正误. 【详解】解:对于A:,,,所以函数的图象关于点对称,又,所以函数的图象关于点对称,故A正确; 对于B:,易知,所以,则,即函数的值域为(0,1),故B正确; 对于C:由容易判断,函数在上单调递增,且,所以不等式的解集是,故C正确; 对于D:因为函数在上单调递增,所以方程不可能有两个不相等的实数根,故D错误. 故选:D. 7、D 【解析】逐项判断函数的定义域与对应法则是否相同,即可得出结果. 【详解】对于A, 定义域为,而定义域为,定义域相同,但对应法则不同,故不是同一函数,排除A; 对于B,定义域,而定义域为,所以定义域不同,不是同一函数,排除B; 对于C, 定义域为,而定义域为,所以定义域不同,不是同一函数,排除C; 对于D,与的定义域均为,且,对应法则一致,所以是同一函数,D正确. 故选:D 8、B 【解析】由平面向量的三角形法则和数乘向量可得解 【详解】 由题意, 故选:B 【点睛】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题 9、B 【解析】根据相等函数的判定方法,逐项判断,即可得出结果. 【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错; B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确; C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错; D选项, 因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错. 故选:B. 10、A 【解析】,故选A 二、填空题:本大题共6小题,每小题5分,共30分。 11、7 【解析】根据对数与指数的运算性质计算即可得解. 【详解】解: . 故答案为:7. 12、 【解析】在上单调递增 最小值为 13、 【解析】由函数是幂函数,则,解出的值,再验证函数是否为偶函数,得出答案. 【详解】由函数是幂函数,则,得或 当时,函数不是偶函数,所以舍去. 当时,函数是偶函数,满足条件. 故答案为: 【点睛】本题考查幂函数的概念和幂函数的奇偶性,属于基础题. 14、; 【解析】因为函数的图象向左平移个单位长度,得到,所以的最小值为 15、 ①.1 ②.42 【解析】求出的周期和对称轴,再结合图象即可. 【详解】由条件可知函数的图象关于对称轴对称, 由可知,,则周期, 即, 函数在区间中的所有零点之和即为函数与函数 图象的交点的横坐标之和, 当时,为单调递增函数,, ,且区间关于对称, 又∵由已知得也是的对称轴,∴只需用研究直线左侧部分即可, 由图象可知左侧有7个交点,则右侧也有7个交点,将这14个交点的横坐标从小到大排列,第个数记为,由对称性可知,则, 同理,…,, ∴. 故答案为:,. 16、 ①. ②. 【解析】将化为可得值,通过两角和的正切公式可得的值. 【详解】因为,所以; , 故答案为:,. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1), (2), 【解析】(1)由为锐角,可求出,利用同角之间的关系可求出,由正弦的两角和求. (2)利用同角之间的关系可求出,根据结合余弦的差角公式可得出答案. 【小问1详解】 因为为锐角,且, 所以 所以 【小问2详解】 因为为锐角,所以 所以 所以 18、(1)见解析;(2)见解析 【解析】(1)连结,交点,连,推出//1,即可证明平面; (2)取的中点,连结,证明四边形是平行四边形,证明 ,得到 平面,然后证明平面 平面 试题解析:(1)连结,交点,连,则是的中点, 因为是的中点,故//. 因为平面,平面. 所以//平面. (2)取的中点,连结,因为是的中点, 故//且 . 显然//,且 ,所以//且 则四边形是平行四边形. 所以//. 因为,所以 又,所以直线 平面. 因为//,所以直线 平面. 因为平面,所以平面 平面 19、(1)分别抽取人,人,人;(2) 【解析】(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解. 【详解】(1)第组的人数为, 第组的人数为, 第组的人数为, 因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽 取的人数分别为:第组: ;第组: ;第组: . 所以应从第,,组中分别抽取人,人,人. (2)设“第组的志愿者有被抽中”为事件. 记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则 从名志愿者中抽取名志愿者有: ,,,,,,,,,, ,,,,,共有种. 其中第组的志愿者被抽中的有种, 答:第组的志愿者有被抽中的概率为 【点睛】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏. 20、(1)为上的奇函数;证明见解析 (2)答案不唯一,具体见解析 【解析】(1)利用函数奇偶性的定义判断即可, (2)由题意可得,得,然后分和解不等式即可 【小问1详解】 函数为奇函数 证明:函数的定义域为, , 即对任意恒成立.所以为上的奇函数 【小问2详解】 由,得,即 因为,,且,所以且 由,即 当,即时,解得 当,即时,解得 综上,当时,不等式的解集为; 当时,不等式的解集为 21、(Ⅰ)1;(Ⅱ)在上递增,证明详见解析;(Ⅲ)不存在. 【解析】(Ⅰ)根据函数是偶函数,得到恒成立,即恒成立,进而得到,即可求出结果; (Ⅱ)任取,且,根据题意,作差得到,进而可得出函数单调性; (Ⅲ)由(Ⅱ)知函数在上递增,由函数是偶函数,所以函数在上递减,再由题意,不等式恒成立可化为恒成立,即对任意的恒成立,根据判别式小于0,即可得出结果. 【详解】(Ⅰ)因为定义域为的函数是偶函数,则恒成立, 即,故恒成立, 因为不可能恒为,所以当时, 恒成立, 而,所以 (Ⅱ)该函数在上递增,证明如下 设任意,且,则 ,因为,所以,且; 所以,即,即; 故函数在上递增 (Ⅲ)由(Ⅱ)知函数在上递增,而函数是偶函数,则函数在上递减.若存在实数,使得对任意的,不等式恒成立.则恒成立,即, 即对任意的恒成立, 则,得到,故, 所以不存在 【点睛】本主要考查由函数奇偶性求参数,用单调性的定义判断函数单调性,以及由不等式恒成立求参数的问题,熟记函数单调性与奇偶性的定义即可,属于常考题型.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




江苏省盐城中学2025-2026学年高一数学第一学期期末经典试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12794150.html