四川省乐山外国语学校2026届数学高一第一学期期末统考模拟试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省 乐山 外国语学校 2026 数学 第一 学期 期末 统考 模拟 试题 解析
- 资源描述:
-
四川省乐山外国语学校2026届数学高一第一学期期末统考模拟试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知,且,则的值为() A. B. C. D. 2.若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有( ) A.0对 B.1对 C.2对 D.3对 3.已知点位于第二象限,那么角所在的象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.已知,则的值为() A. B. C.1 D.2 5.已知,若角的终边经过点,则的值为() A. B. C.4 D.-4 6.在实数的原有运算法则中,补充定义新运算“”如下:当时,;当时,,已知函数,则满足的实数的取值范围是 A. B. C. D. 7.关于的方程的所有实数解的和为 A.2 B.4 C.6 D.8 8.一个几何体的三视图如图所示,则该几何体可以是( ) A.棱柱 B.棱台 C.圆柱 D.圆台 9.已知函数表示为 设,的值域为,则( ) A., B., C., D., 10.已知函数的零点,(),则() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知平面向量,,,,,则的值是______ 12.函数的定义域是______ 13.已知函数的图象如图,则________ 14.若直线:与直线:互相垂直,则实数的值为__________ 15.已知函数,那么_________. 16.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为、、,则三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.设函数. (1)求的最小正周期和最大值; (2)求的单调递增区间. 18.设函数.求函数的单调区间,对称轴及对称中心. 19.已知函数是奇函数 (1)求a的值,并根据定义证明函数在上单调递增; (2)求的值域 20.已知函数 (1)判断并说明函数的奇偶性; (2)若关于的不等式恒成立,求实数的取值范围 21.如图,以Ox为始边作角与,它们的终边分别与单位圆相交于P,Q两点,已知点P的坐标为 (1)求的值; (2)若,求的值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】先通过诱导公式把转化成,再结合平方关系求解. 【详解】,又,. 故选:B. 2、D 【解析】根据“黄金点对“,只需要先求出当x<0时函数f(x)关于y轴对称的函数的解析式,再作出函数的图象,利用两个图象交点个数进行求解即可 【详解】 由题意知函数f(x)=2x,x<0关于y轴对称的函数为,x>0, 作出函数f(x)和,x>0的图象, 由图象知当x>0时,f(x)和y=()x,x>0的图象有3个交点 所以函数f(x)的““黄金点对“有3对 故选D 【点睛】本题主要考查分段函数的应用,结合“黄金点对“的定义,求出当x<0时函数f(x)关于y轴对称的函数的解析式,作出函数的图象,利用数形结合是解决本题的关键 3、C 【解析】通过点所在象限,判断三角函数的符号,推出角所在的象限. 【详解】点位于第二象限, 可得,, 可得,, 角所在的象限是第三象限 故选C. 【点睛】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负. 4、A 【解析】先使用诱导公式,将要求的式子进行化简,然后再将带入即可完成求解. 【详解】由已知使用诱导公式化简得:, 将代入即. 故选:A. 5、A 【解析】先通过终边上点的坐标求出,然后代入分段函数中求值即可. 【详解】解:因为角的终边经过点 所以 所以 所以 故选A. 【点睛】本题考查了任意角三角函数的定义,分段函数的计算求值,属于基础题. 6、C 【解析】当时,; 当时,; 所以, 易知,在单调递增,在单调递增, 且时,,时,, 则在上单调递增, 所以得:,解得,故选C 点睛:新定义的题关键是读懂题意,根据条件,得到,通过单调性分析,得到在上单调递增,解不等式,要符合定义域和单调性的双重要求,则,解得答案 7、B 【解析】本道题先构造函数,然后通过平移得到函数,结合图像,计算,即可 【详解】先绘制出,分析该函数为偶函数,而相当于往右平移一个单位,得到函数图像为: 发现交点A,B,C,D关于对称,故,故所有实数解的和为4,故选B 【点睛】本道题考查了函数奇偶性判定法则和数形结合思想,绘制函数图像,即可 8、D 【解析】由三视图知,从正面和侧面看都是梯形, 从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台, 则该几何体可以是圆台 故选D 9、A 【解析】根据所给函数可得答案. 【详解】根据题意得,的值域为. 故选:A . 10、D 【解析】将函数化为,根据二次函数的性质函数的单调性,利用零点的存在性定理求出两个零点的分布,进而得出零点的取值范围,依次判断选项即可. 【详解】由题意知, , 则函数图象的对称轴为, 所以函数在上单调递增,在上单调递减, 又,, ,, 所以, 因为,, 所以, 所以,故A错误; ,故B错误; ,故C错误; ,故D正确. 故选:D 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解. 【详解】由得, 所以, 所以 所以. 故答案为: 12、 【解析】 ,即定义域为 点睛:常见基本初等函数定义域的基本要求 (1)分式函数中分母不等于零 (2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y=x0的定义域是{x|x≠0} (5)y=ax(a>0且a≠1),y=sin x,y=cos x的定义域均为R. (6)y=logax(a>0且a≠1)的定义域为(0,+∞) 13、8 【解析】由图像可得:过点和,代入解得a、b 【详解】由图像可得:过点和,则有:,解得 ∴ 故答案为:8 14、-2 【解析】由于两条直线垂直,故. 15、3 【解析】首先根据分段函数求的值,再求的值. 【详解】,所以. 故答案为:3 16、 【解析】计算得出,利用海伦—秦九韶公式可得出,利用基本不等式可求得的最大值. 【详解】,所以,. 当且仅当时,等号成立,且此时三边可以构成三角形. 因此,该三角形面积的最大值为. 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)最小正周期,最大值为;(2). 【解析】把化简为, (1)直接写出最小正周期和最大值; (2)利用正弦函数的单调性直接求出单调递增区间. 【详解】 (1)的最小正周期;最大值为; (2)要求的单调递增区间,只需, 解得:, 即的单调递增区间为. 18、函数增区间为;减区间为;对称轴为;对称中心为 【解析】根据的单调区间、对称轴及对称中心即可得出所求的. 【详解】 函数增区间为 同理函数减区间为 令 其对称轴为 令 其对称中心为 【点睛】本题主要考查的是正弦函数的图像和性质,考查学生对正弦函数图像和性质的理解和应用,同时考查学生的计算能力,是中档题. 19、(1),证明见解析; (2). 【解析】(1)由列方程求参数a,令判断的大小关系即可证结论; (2)根据指数复合函数值域的求法,求的值域. 【小问1详解】 由题设,,则, ∴,即, 令,则,又单调递增, ∴,,,即. ∴在上单调递增,得证. 小问2详解】 由,则, ∴. 20、(1)为奇函数(2) 【解析】(1)利用函数的奇偶性判断即可; (2)由(1)知为奇函数且单调递增,将不等式恒成立分离参数,利用基本不等式解得即可. 【详解】(1)函数的定义域为, , 所以为奇函数. (2)由(1)知奇函数且定义域为,易证在上单调递增, 所以不等式恒成立,转化, 即对恒成立, 所以对恒成立, 即, 因,则, 所以,即, 所以, 故实数的取值范围为. 【点睛】本题考查函数奇偶性的定义,以及利用奇偶性,单调性解不等式恒成立问题,属于中档题. 21、(1)(2) 【解析】(1)由三角函数的定义首先求得的值,然后结合二倍角公式和同角三角函数基本关系化简求解三角函数式的值即可; (2)由题意首先求得的关系,然后结合诱导公式和两角和差正余弦公式即可求得三角函数式的值. 【详解】(1)由三角函数定义得,, ∴原式 (2)∵,且, ∴,, ∴, ∴ 【点睛】本题主要考查三角函数的定义,二倍角公式及其应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




四川省乐山外国语学校2026届数学高一第一学期期末统考模拟试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12774477.html