高中必修一函数奇偶性详细讲解与练习(详细答案).doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 必修 函数 奇偶性 详细 讲解 练习 答案
- 资源描述:
-
函数的单调性和奇偶性 例1 (1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析 函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析 要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析 这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2 判断下列函数的奇偶性: (1)f(x)= - (2)f(x)=(x-1) . 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数. (2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析 用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3 已知函数f(x)= . (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)= = =f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)= - = = . 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得 f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析 奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4 已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)= 在(-∞,0)上是增函数还是减函数?证明你的结论. 分析 根据函数的增减性的定义,可以任取x1<x2<0,进而判定F(x1)-F(x2)= - = 的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件中推出. 解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0. ∵y=f(x)在(0,+∞)上是增函数,且f(x)<0, ∴f(-x2)<f(-x1)<0. ① 又∵f(x)是奇函数, ∴f(-x2)=-f(x2),f(-x1)=-f(x1) ② 由①、②得 f(x2)>f(x1)>0.于是 F(x1)-F(x2)= >0,即F(x1)>F(x2), 所以F(x)= 在(-∞,0)上是减函数. 评析 本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误. 避免错误的方法是:要明确证明的目标,有针对性地展开证明活动. 例5 讨论函数f(x)= (a≠0)在区间(-1,1)内的单调性. 分析 根据函数的单调性定义求解. 解:设-1<x1<x2<1,则 f(x1)-f(x2)= - = ∵x1,x2∈(-1,1),且x1<x2, ∴x1-x2<0,1+x1x2>0, (1-x21)(1-x22)>0 于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2). 故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数. 评析 根据定义讨论(或证明)函数的单调性的一般步骤是: (1)设x1、x2是给定区间内任意两个值,且x1<x2; (2)作差f(x1)-f(x2),并将此差式变形; (3)判断f(x1)-f(x2)的正负,从而确定函数的单调性. 例6 求证:f(x)=x+ (k>0)在区间(0,k]上单调递减. 解:设0<x1<x2≤k,则 f(x1)-f(x2)=x1+ -x2- = ∵0<x1<x2≤k, ∴x1-x2<0,0<x1x2<k2, ∴f(x1)-f(x2)>0 ∴f(x1)>f(x2), ∴f(x)=x+ 中(0,k]上是减函数. 评析 函数f(x)在给定区间上的单调性反映了函数f(x)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明f(x)在[a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点x1,x2,当x1<x2时,都有不等式f(x1)<f(x2)(f(x1)>f(x2)) 类似可以证明: 函数f(x)=x+ (k>0)在区间[k,+∞]上是增函数. 例7 判断函数f(x)= 的奇偶性. 分析 确定函数的定义域后可脱去绝对值符号. 解:由 得函数的定义域为[-1,1].这时,|x-2|=2-x. ∴f(x)= , ∴f(-x)= = =f(x). 且注意到f(x)不恒为零,从而可知,f(x)= 是偶函数,不是奇函数. 评析 由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程. 函数奇偶性练习 一、选择题 1.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx( ) A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数 2.已知函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则( ) A.,b=0 B.a=-1,b=0 C.a=1,b=0 D.a=3,b=0 3.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R上的表达式是( ) A.y=x(x-2) B.y =x(|x|-1) C.y =|x|(x-2) D.y=x(|x|-2) 4.已知f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于( ) A.-26 B.-18 C.-10 D.10 5.函数是( ) A.偶函数 B.奇函数 C.非奇非偶函数 D.既是奇函数又是偶函数 6.若,g(x)都是奇函数,在(0,+∞)上有最大值5, 则f(x)在(-∞,0)上有( ) A.最小值-5 B.最大值-5 C.最小值-1 D.最大值-3 二、填空题 7.函数的奇偶性为________(填奇函数或偶函数) . 8.若y=(m-1)x2+2mx+3是偶函数,则m=_________. 9.已知f(x)是偶函数,g(x)是奇函数,若,则f(x)的解析式为_______. 10.已知函数f(x)为偶函数,且其图象与x轴有四个交点,则方程f(x)=0的所有实根之和为________. 三、解答题 11.设定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1-m)<f(m),求实数m的取值范围. 12.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y)(xR,yR),且f(0)≠0, 试证f(x)是偶函数. 13.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2—1,求f(x)在R上的表达式. 14.f(x)是定义在(-∞,-5][5,+∞)上的奇函数,且f(x)在[5,+∞)上单调递减,试判断f(x)在(-∞,-5]上的单调性,并用定义给予证明. 15.设函数y=f(x)(xR且x≠0)对任意非零实数x1、x2满足f(x1·x2)=f(x1)+f(x2), 求证f(x)是偶函数. 函数的奇偶性练习参考答案 1. 解析:f(x)=ax2+bx+c为偶函数,为奇函数, ∴g(x)=ax3+bx2+cx=f(x)·满足奇函数的条件. 答案:A 2.解析:由f(x)=ax2+bx+3a+b为偶函数,得b=0. 又定义域为[a-1,2a],∴a-1=2a,∴.故选A. 3.解析:由x≥0时,f(x)=x2-2x,f(x)为奇函数, ∴当x<0时,f(x)=-f(-x)=-(x2+2x)=-x2-2x=x(-x-2). ∴即f(x)=x(|x|-2) 答案:D 4.解析:f(x)+8=x5+ax3+bx为奇函数, f(-2)+8=18,∴f(2)+8=-18,∴f(2)=-26. 答案:A 5.解析:此题直接证明较烦,可用等价形式f(-x)+f(x)=0. 答案:B 6.解析:、g(x)为奇函数,∴为奇函数. 又f(x)在(0,+∞)上有最大值5, ∴f(x)-2有最大值3. ∴f(x)-2在(-∞,0)上有最小值-3, ∴f(x)在(-∞,0)上有最小值-1. 答案:C 7.答案:奇函数 8.答案:0解析:因为函数y=(m-1)x2+2mx+3为偶函数, ∴f(-x)=f(x),即(m-1)(-x)2+2m(-x)+3=(m—1)x2+2mx+3,整理,得m=0. 9.解析:由f(x)是偶函数,g(x)是奇函数, 可得,联立,∴. 答案: 10.答案:0 11.答案: 12.证明:令x=y=0,有f(0)+f(0)=2f(0)·f(0),又f(0)≠0,∴可证f(0)=1.令x=0, ∴f(y)+f(-y)=2f(0)·f(y)f(-y)=f(y),故f(x)为偶函数. 13.解析:本题主要是培养学生理解概念的能力. f(x)=x3+2x2-1.因f(x)为奇函数,∴f(0)=0. 当x<0时,-x>0,f(-x)=(-x)3+2(-x)2-1=-x3+2x2-1, ∴f(x)=x3-2x2+1. 因此, 点评:本题主要考查学生对奇函数概念的理解及应用能力. 14.解析:任取x1<x2≤-5,则-x1>-x2≥-5. 因f(x)在[5,+∞]上单调递减,所以f(-x1)<f(-x2)f(x1)<-f(x2)f(x1)>f(x2),即单调减函数. 点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化. 15.解析:由x1,x2R且不为0的任意性,令x1=x2=1代入可证, f(1)=2f(1),∴f(1)=0. 又令x1=x2=-1, ∴f[-1×(-1)]=2f(1)=0, ∴(-1)=0.又令x1=-1,x2=x, ∴f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数. 点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x1=x2=1,x1=x2=-1或x1=x2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可. ..展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高中必修一函数奇偶性详细讲解与练习(详细答案).doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/10645042.html