分享
分销 收藏 举报 申诉 / 3
播放页_导航下方通栏广告

类型新建1111111111.doc

  • 上传人:s4****5z
  • 文档编号:9297944
  • 上传时间:2025-03-20
  • 格式:DOC
  • 页数:3
  • 大小:16KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新建 1111111111
    资源描述:
    高三复习直线与直线方程教案 教学目标:1、在平面直角坐标系中,结合具体图形,掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. 3.掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 知识梳理 1.直线的倾斜角与斜率 (1)直线的倾斜角: ①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴____与直线l____方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为______. ②倾斜角 的取值范围为________. (2)直线的斜率: ①定义:一条直线的倾斜角α的______叫做这条直线的斜率,斜率常用小写字母k表示,即k=______,倾斜角是______的直线的斜率不存在. ②过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=________. 2.直线的方程 (1)点斜式:已知直线过点(x0,y0),斜率为k,则直线方程为____________,它不包括__________的直线. (2)斜截式:已知直线在y轴上的截距b和斜率k,则直线方程为__________,它不包括垂直于x轴的直线. (3)两点式:已知直线经过两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),则直线方程为________,它不包括垂直于坐标轴的直线. (4)截距式:已知直线在x轴和y轴上的截距分别为a,b(其中a≠0,b≠0),则直线方程为____________,它不包括垂直于坐标轴的直线和过原点的直线. (5)一般式:任何直线的方程均可写成______________的形式. 基础自测 1.直线x+3y+1=0的倾斜角是(  ). A.π6 B.π3 C.23π D.56π 2.已知A(3,1),B(-1,k),C(8,11)三点共线 ,则k的取值是(  ). A.-6 B.-7 C.-8 D.-9 3.斜率为2的直线的倾斜角α所在的范围是(  ). A.0°<α<45° B.45°<α<90° C .90°<α<135° D.135°<α<180° 4.直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是(  ). A.1 B.-1 C.-2或-1 D.-2或1 5.若直线ax+by+c=0经过第一、二、三象限,则有(  ). A.ab>0,bc>0 B.ab>0,bc<0 C.ab<0,bc>0 D.ab<0,bc<0 思维拓展 1.如何正确理解直线的倾斜角与斜率的关系? 提示:(1)所有的直线都有倾斜角,当直线与x轴垂直,即倾斜角为π2时,斜率不存在;(2)直线倾斜角的范围为[0,π),因为正切函数在[0,π)上不单调,所以在研究斜率与倾斜角的关系时,可结合正切函数在0,π2∪π2,π的图像,对其在0,π2和π2,π上的变化情况分别讨论. 2.求直线方程时,应注意什么? 提示:(1)因为点确定直线的位置,斜率确定直线的方向,所以求直线方程时可从寻求点的坐标或直线的斜率入手,再选择合适的形式写出直线的方程;(2)有时也可先设出直线的方程,再利用待定系数法确定其中的参数.此时,一定要注意斜率不存在的情况. 一、直线的倾斜角与斜率 【例1】已知 A(-2,3),B(3,2),过点P(0,-2)的直线l与线段AB没有公共点,则直线l的斜率的取值范围是__________. 方法提炼直线倾斜角的范围是[0,π),但这个区间不是正切函数的单调区 间.因此在考虑倾斜角与斜率的关系时,要分0,π2与π2,π两种情况讨论.由正切函数图像可以看出,当α∈0,π2时,斜率k∈[0,+∞ );当α=π2时,斜率不存在;当α∈π2,π时,斜率k∈(-∞,0). 请做[针对训练]1 二、求直线的方程 【例2】已知直线l过(2,1),(m,3)两点,求直线l的方程. 方法提炼用待定系数法求直线方程时,应先选择适当的直线方程的形式,并注意所选方程的适用条件.无论选择哪种直线方程的形式,最后结果都要化成一般式. 请做[针对训练]4 三、直线方程的应用 已知点A(2,5)与点B(4,-7),试在y轴上求一点P,使得|PA|+|PB|的值为最小. 已知两直线l1:x+2=0,l2:4x+3y+5=0及定点A(-1,-2),求过l1,l2的交点且与点A的距离等于1的直线l的方程. 方法提炼在求直线方程的过程中,若有以直线为载体的面积、距离的最值等问题,一般要结合函数、不等式或利用对称来加以解决. 通过对近几年的高考试题的统计分析可以看出,对于直线方程的考查,一是考查直线倾斜角与斜率的关系、斜率公式;二是考查求直线的方程.从分析五种直线方程成立的条件入手,确定相应的量是确定直线方程的关键.用待定系数法求直线方程时,要特别注意斜率不存在的情况.单独考查直线方程的题目较少,主要是以直线方程为载体,与其他知识相交汇进行综合考查. 针对训练 1.直线xsin α-y+1=0的倾斜角的变化范围是(  ). A.0,π2 B.(0,π) C.-π4,π4 D.0,π4∪3π4,π 2.直线xcos θ+3y+2=0的倾斜角的取值范围为__________. 3.已知直线l经过坐标原 点 ,且与圆x2+y2-4x+3=0相切,切点在第四象限,则直线l的方程为__________. 4.若直线l过点P(-2,3),与两坐标轴围成的三角形面积为4,求直线l的方程. 5.已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程. 反思:希望学生可以通过练习帮助掌握这部分知识,特别注意使用各种直线方程的条件。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:新建1111111111.doc
    链接地址:https://www.zixin.com.cn/doc/9297944.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork