圆锥曲线 (1).doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 1
- 资源描述:
-
圆锥曲线的定义及其标准方程 一、教材分析 (一)教材所处的地位、内容和作用 本节内容是椭圆的定义及其标准方程,是在学习了曲线与方程、求曲线的方程以及曲线的交点之后展开的,它是继续学习椭圆的几何性质与选学内容中“三种圆锥曲线的统一的极坐标方程”的基础。因此本节内容起到一个巩固旧知,熟练方法,拓展新知的承上启下的作用,是发展学生自主学习能力,培养创新能力的好素材。 (二)教学目标 1、知识目标:A识记:① 记住椭圆的定义;② 区分椭圆的两种类型的标准方程及其对应的图形;③能根据a、b、c的值写出椭圆的标准方程。 B理解:①理解椭圆的焦点、焦距的意义;②会推导椭圆的标准方程;③能掌握a、b、c之间的关系,会由其中的两个求出第三个。C掌握:定义法解题、待定系数法解题和数形结合解题 2、能力目标:① 培养学生建立适当坐标系的解析法解题能力。② 巩固与发展学生的定义法解题、待定系数法解题和数形结合的解题能力。 3、德育培养目标:培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。 (三)教学重点、难点 1、教学重点: ①.椭圆的定义;②.椭圆标准方程的形式与图形、焦点坐标的对应关系;③根据条件求椭圆的标准方程。 2、教学难点:①椭圆标准方程的推导;②应用标准方程的形式与图形、焦点坐标对应关系解题。 二、学生情况分析 在学习椭圆之前,学生对曲线与方程有了一定的了解;基本能运用求曲线方程的一般方法求曲线的方程。椭圆是常见的图形,学生对椭圆已有一定的感性认识,例如:立体几何中圆的直观图等等。 三、教学方法分析 (一) 启发诱导式:用几何画板演示点的运动轨迹,启发学生猜想与概括椭圆的定义。 (二) 自主学习式:在椭圆的标准方程的推导等具体问题的分析过程中,由学生自己通过联想、类比、对比、归纳,把原有的求轨迹方程的方法迁移到新情境中,将新的知识内化到学生原有的认知结构中去。 (三) 问题解决式:将例题教学练习化。 (四)利用多媒体辅助教学,化抽象为具体,增强动感与直观性,增大教学容量,提高教学效果和教学质量。 四、教学过程 教材分析 圆锥曲线是解析几何中的一个重要内容,本章圆锥曲线分为椭圆、双曲线和抛物线三个部分,三部分在圆锥曲线中的地位相同。本章对双曲线的教学,是在学生对于椭圆基本知识和研究方法已经熟悉基础上进行的,所以讲解时应采用类比的方法让学生自主研究、合作交流等方式得出双曲线的定义、标准方程,最后反思应用。本课是高二数学§8.4的第一课时,它是学习双曲线的性质及其应用的基础。双曲线的定义与椭圆的定义很相似,但不容易掌握而又非常重要,学习时要注意和椭圆义联系与区别,为深刻体会圆锥曲线的统一定义作好充分准备,又可对学生进行运动、变化、联系、对立、统一的辩证唯物主义思想教育。 教学目标: 1、知识目标:理解和掌握双曲线的定义、标准方程及其求法。 2、能力目标:掌握双曲线的定义、标准方程及其推导方法,培养学生动手能力,分类讨论、类比的数学思想方法 3、情感目标:通过对双曲线定义与椭圆定义的比较,是学生认识到比较法是认识事物掌握其实质的一种有效方法。 教学重点:双曲线的定义,求双曲线标准方程 教学难点:推导双曲线的标准方程 教法:尝试教学法 一、知识回顾 通过幻灯片展示,强调圆锥曲线定义及其方程中要注意的问题 完毕后,热身训练加以巩固 二. 知识应用: 题型(一)求圆锥曲线的标准方程 例1 、 练习(一): (2)中心在原点,与双曲线 有相同的渐近线,对称轴是坐标轴, 且过(2,2)点的双曲线方程是( ) 题型(二)应用定义求最值 例2 练习(二):. 变式: 小结: 1 知识小结:(1)圆锥曲线的定义 (2)圆锥曲线的标准方程、性质 2 方法小结:(1)待定系数法求圆锥曲线的标准方程 (2)定义法求圆锥曲线的方程、最值 3 数学思想:数形结合、转化、分类讨论展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




圆锥曲线 (1).doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/9008410.html