分享
分销 收藏 举报 申诉 / 7
播放页_导航下方通栏广告

类型一元二次方程解法——因式分解、配方法.doc

  • 上传人:可****
  • 文档编号:773844
  • 上传时间:2024-03-11
  • 格式:DOC
  • 页数:7
  • 大小:134.50KB
  • 下载积分:11 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    一元 二次方程 解法 因式分解 配方
    资源描述:
    ______________________________________________________________________________________________________________ 一元二次方程解法——因式分解、配方法 知识点回顾: 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 解法一 ——直接开方法 适用范围:可解部分一元二次方程 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n 归纳小结: 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”. 由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解 自主练习:1:用直接开平方法解下列方程: (1);   (2); (3). (4) (5);   (6); (7);    2. 关于的方程的根  ,  . 3. 关于的方程的解为      解法二——分解因式法 适用范围:可解部分一元二次方程 因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。 解下列方程. (1)2x2+x=0 (2)3x2+6x=0 上面两个方程中都没有常数项;左边都可以因式分解: 2x2+x=x(2x+1),3x2+6x=3x(x+2) 因此,上面两个方程都可以写成: (1)x(2x+1)=0 (2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是: (1)x=0或2x+1=0,所以x1=0,x2=-. (2)3x=0或x+2=0,所以x1=0,x2=-2. 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程 (1)4x2=11x (2)(x-2)2=2x-4 分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,另一边为0的形式 解:(1)移项,得:4x2-11x=0 因式分解,得:x(4x-11)=0 于是,得:x=0或4x-11=0 x1=0,x2= (2)移项,得(x-2)2-2x+4=0 (x-2)2-2(x-2)=0 因式分解,得:(x-2)(x-2-2)=0 整理,得:(x-2)(x-4)=0 于是,得x-2=0或x-4=0 x1=2,x2=4 例2.已知9a2-4b2=0,求代数式的值. 分析:要求的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误. 解:原式= ∵9a2-4b2=0 ∴(3a+2b)(3a-2b)=0 3a+2b=0或3a-2b=0, a=-b或a=b 当a=-b时,原式=-=3, 当a=b时,原式=-3. 例3.(十字相乘法)我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程. (1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0 上面这种方法,我们把它称为十字相乘法. 一:用因式分解法解下列方程: (1)y2+7y+6=0; (2)t(2t-1)=3(2t-1); (3)(2x-1)(x-1)=1. (4)x2+12x=0; (5)4x2-1=0; (6)x2=7x; (7)x2-4x-21=0; (8)(x-1)(x+3)=12; (9)3x2+2x-1=0; (10)10x2-x-3=0; (11)(x-1)2-4(x-1)-21=0. 解法三——配方法 适用范围:可解全部一元二次方程 引例::x2+6x-16=0 x2+6x-16=0移项→x2+6x=16 两边加(6/2)2使左边配成x2+2bx+b2的形式 → x2+6x+32=16+9 左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5 解一次方程→x1=2,x2= -8 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根. 用配方法解一元二次方程小口诀    二次系数化为一;常数要往右边移;一次系数一半方;两边加上最相当 例1.用配方法解下列关于x的方程 (1)x2-8x+1=0 (2)x2-2x-=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 例3.解下列方程 (1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0 分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方. 拓展题.用配方法解方程(6x+7)2(3x+4)(x+1)=6 分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y的方程,像这样的转化,我们把它称为换元法. 解:设6x+7=y 则3x+4=y+,x+1=y- 依题意,得:y2(y+)(y-)=6 去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72, y4-y2=72 (y2-)2= y2-=± y2=9或y2=-8(舍) ∴y=±3 当y=3时,6x+7=3 6x=-4 x=- 当y=-3时,6x+7=-3 6x=-10 x=- 所以,原方程的根为x1=-,x2=- 例5. 求证:无论y取何值时,代数式-3 y2+8y-6恒小于0. 一元二次方程解法——因式分解、配方法 2013-7-14 15008620708(李老师) 姓名: (一)1.下面一元二次方程解法中,正确的是( ). A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7 B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1= ,x2= C.(x+2)2+4x=0,∴x1=2,x2=-2 D.x2=x 两边同除以x,得x=1 2.下列命题①方程kx2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有( ). A.0个 B.1个 C.2个 D.3个 3.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为( ). A.- B.-1 C. D.1 4.x2-5x因式分解结果为_______;2x(x-3)-5(x-3)因式分解的结果是______. 5.方程(2x-1)2=2x-1的根是________. 6.二次三项式x2+20x+96分解因式的结果为________;如果令x2+20x+96=0,那么它的两个根是_________. 7.方程x(x-)= -x的解为__________. 8.用因式分解法解下列方程. (1)3y2-6y=0 (2)25y2-16=0 (3)x2-12x-28=0 (4)x2-12x+35=0 9.已知(x+y)(x+y-1)=0,求x+y的值. (二)1.配方法解方程2x2-x-2=0应把它先变形为( ). A.(x-)2= B.(x-)2=0 C.(x-)2= D.(x-)2= 2.下列方程中,一定有实数解的是( ). A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(x-a)2=a 3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是( ). A.1 B.2 C.-1 D.-2 4.将二次三项式x2-4x+1配方后得( ). A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3 5.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ). A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11 6.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于( ). A.1 B.-1 C.1或9 D.-1或9 7.方程x2+4x-5=0的解是________. 8.方程左边配成一个完全平方式,所得的方程是 . 9.代数式的值为0,则x的值为________. 10.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______. 11.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数. 12.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________. 13.用配方法解方程. (1)9y2-18y-4=0 (2)x2+3=2x (3) (4) (5) (6) 14.如果x2-4x+y2+6y++13=0,求(xy)z的值. 15.用配方法证明: (1)的值恒为正; (2)的值恒小于0. (3)多项式的值总大于的值. 16.用适当的方法解下列方程 (1)x2-4x-3=0         (2)(3y-2)2=36 (3)x2-4x+4=0 (4) (5)(2x+3)2-25=0. (6) (7)(x-1)2=2x-2 (8)6x2-x-2=0 (9)(3x+1)2=7     (10)9x2-24x+16=11 (11)4(x+2)2-9(x-3)2=0        (12)(x+5)(x-5)=3 (13)3x2+1=2x     (14)(2x+3)2+5(2x+3)-6=0 Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:一元二次方程解法——因式分解、配方法.doc
    链接地址:https://www.zixin.com.cn/doc/773844.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork