河南省郑州市第九十六中八年级数学 第二章《分解因式》教案.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分解因式 河南省郑州市第九十六中八年级数学 第二章《分解因式》教案 河南省 郑州市 第九 十六 八年 级数 第二 分解 因式 教案
- 资源描述:
-
第二章 分解因式§2.1 分解因式 教学目标 1.使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系. 2.通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力. 教学重点 1.理解因式分解的意义. 2.识别分解因式与整式乘法的关系. 教学难点 通过观察,归纳分解因式与整式乘法的关系. 教学目标 一、创设问题情境,引入新课 计算(a+b)(a-b) a2-b2=(a+b)(a-b)成立吗?那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题. 二、讲授新课 1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流. 993-99能被100整除. 因为993-99=99×992-99 =99×(992-1)=99×9800=99×98×100 其中有一个因数为100,所以993-99能被100整除.993-99还能被哪些正整数整除? 还能被99,98,980,990,9702等整除. 从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式. 2.议一议 你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流. 观察a3-a与993-99这两个代数式. 3.做一做 (1)计算下列各式: ①(m+4)(m-4)=__________; ②(y-3)2=__________; ③3x(x-1)=__________; ④m(a+b+c)=__________; ⑤a(a+1)(a-1)=__________. (2)根据上面的算式填空: ①3x2-3x=( )( ); ②m2-16=( )( ); ③ma+mb+mc=( )( ); ④y2-6y+9=( )2. 能分析一下两个题中的形式变换吗? 在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式. 在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式 4.想一想 由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗? 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是分解因式,这两种过程正好相反. 由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反. 如:(1)m(a+b+c)=ma+mb+mc (2)ma+mb+mc=m(a+b+c) 联系:等式(1)和(2)是同一个多项式的两种不同表现形式. 区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算. 等式(2)是把一个多项式化成几个整式的积的形式,是因式分解. 即ma+mb+mc m(a+b+c). 所以,因式分解与整式乘法是相反方向的变形. 5.例题:下列各式从左到右的变形,哪些是因式分解? (1)4a(a+2b)=4a2+8ab; (2)6ax-3ax2=3ax(2-x); (3)a2-4=(a+2)(a-2); (4)x2-3x+2=x(x-3)+2. (1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,不是因式分解; (2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解; (3)和(2)相同,是因式分解; (4)是因式分解. 三、课堂练习 连一连 解: 四.课时小结 本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形. 五、课后作业 习题2.1 六、教学反思:分解因式的概念,不能体现出分解因式的要求。学生还不要学习一些很严格的定义,他们只要从直观上知道这么一回事就可以的了。但那利不严格的概念与数学的严谨性不相符。我们班不少学生常常会拿这个概念去问我:"为什么这种明明是完全合符了概念的要求,但老师你又说是不正确的。"我认为,应该对概念的严格定义在书末处列出。这样做对一部分以后从事也数学相关性很大的职业的学生非常有利。 §2.2.1 提公因式法(一) 教学目标 (一)知识认知要求 让学生了解多项式公因式的意义,初步会用提公因式法分解因式. (二)能力训练要求 通过找公因式,培养学生的观察能力. (三)情感与价值观要求 在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用. 教学重点 能观察出多项式的公因式,并根据分配律把公因式提出来. 教学难点 让学生识别多项式的公因式. 教学过程 一、创设问题情境,引入新课 一块场地由三个矩形组成,这些矩形的长分别为,,,宽都是,求这块场地的面积. 解法一:S=× + × + × =++=2 解法二:S=× + × + × = ( ++)=×4=2 从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法. 二、新课讲解 1.公因式与提公因式法分解因式的概念. 将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接. ma+mb+mc=m(a+b+c) 从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点? 等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式. 由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式. 由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法. 2.例题讲解 [例1]将下列各式分解因式: (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x. 分析:首先要找出各项的公因式,然后再提取出来. 解:(1)3x+6=3x+3×2=3(x+2); (2)7x2-21x=7x·x-7x·3=7x(x-3); (3)8a3b2-12ab3c+abc =8a2b·ab-12b2c·ab+ab·c =ab(8a2b-12b2c+c) (4)-24x3-12x2+28x =-4x(6x2+3x-7) 3.议一议 过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤. 首先找各项系数的最大公约数,如8和12的最大公约数是4. 其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的. 4.想一想 从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系? 提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 三、课堂练习 (一)随堂练习 1.写出下列多项式各项的公因式. (1)ma+mb (m) (2)4kx-8ky (4k) (3)5y3+20y2 (5y2) (4)a2b-2ab2+ab (ab) 2.把下列各式分解因式 (1)8x-72=8(x-9) (2)a2b-5ab=ab(a-5) (3)4m3-6m2=2m2(2m-3) (4)a2b-5ab+9b=b(a2-5a+9) (二)补充练习 把3x2-6xy+x分解因式 四.课时小结 1.提公因式法分解因式的一般形式,如: ma+mb+mc=m(a+b+c). 这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式. 2.提公因式法分解因式,关键在于观察、发现多项式的公因式. 3.找公因式的一般步骤 (1)若各项系数是整系数,取系数的最大公约数; (2)取相同的字母,字母的指数取较低的; (3)取相同的多项式,多项式的指数取较低的. (4)所有这些因式的乘积即为公因式. 4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生. 5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题. 五.课后作业 习题2.2 六.活动与探究 利用分解因式计算: (1)32004-32003; (2)(-2)101+(-2)100. 解:(1)32004-32003 =32003×(3-1) =32003×2=2×32003 (2)(-2)101+(-2)100 =(-2)100×(-2+1) =(-2)100×(-1) =-(-2)100 =-2100 七、教学反思: 班中有一位男学生数学成绩是倒数的,平时又特别调皮,经常上课不认真听讲。今天他居然举手上黑板板演,而且做对了!我及时表扬了他,看来他对学习有兴趣了,希望他能继续努力。 §2.2.2 提公因式法(二) 教学目标 (一)知识认知要求 进一步让学生掌握用提公因式法分解因式的方法. (二)能力训练要求 进一步培养学生的观察能力和类比推理能力. (三)情感与价值观要求 通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点. 教学重点 能观察出公因式是多项式的情况,并能合理地进行分解因式. 教学难点 准确找出公因式,并能正确进行分解因式. 教学过程 一、创设问题情境,引入新课 上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜. 二、新课讲解 [例2]把a(x-3)+2b(x-3)分解因式. 分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来. 解:a(x-3)+2b(x-3)=(x-3)(a+2b) 从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢? [例3]把下列各式分解因式: (1)a(x-y)+b(y-x); (2)6(m-n)3-12(n-m)2. 分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此. 解:(1)a(x-y)+b(y-x) =a(x-y)-b(x-y) =(x-y)(a-b) (2)6(m-n)3-12(n-m)2 =6(m-n)3-12[-(m-n)]2 =6(m-n)3-12(m-n)2 =6(m-n)2(m-n-2). 二、做一做 请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立: (1)2-a=__________(a-2); (2)y-x=__________(x-y); (3)b+a=__________(a+b); (4)(b-a)2=__________(a-b)2; (5)-m-n=__________-(m+n); (6)-s2+t2=__________(s2-t2). 解:(1)2-a=-(a-2); (2)y-x=-(x-y); (3)b+a=+(a+b); (4)(b-a)2=+(a-b)2; (5)-m-n=-(m+n); (6)-s2+t2=-(s2-t2). 三、课堂练习 1.把下列各式分解因式: (1)x(a+b)+y(a+b) (2)3a(x-y)-(x-y) (3)6(p+q)2-12(q+p) (4)a(m-2)+b(2-m) (5)2(y-x)2+3(x-y) (6)mn(m-n)-m(n-m)2 2.补充练习:把下列各式分解因式 (1)5(x-y)3+10(y-x)2 (2)m(a-b)-n(b-a) (3)m(m-n)(p-q)-n(n-m)(p-q) (4)(b-a)2+a(a-b)+b(b-a) 四.课时小结 本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式. 五、课后作业 习题2.3 六.活动与探究 把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式. 解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c) =(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c) =(a-b+c)(2a-2c) =2(a-b+c)(a-c) 七、教学反思: ⒈《数学课程标准》提出学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者,本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索,共同探究、解决问题.在教学中能注意充分调动学生的学习积极性、主动性,坚持做到以人为本,以学生为先,立足于让学生先看、先想、先说、先练,根据自己的体验,用自己的思维方式,通过实验、思考、合作、交流学好知识. 2. 探究、发现中,让学生分组讨论,合作、交流,培养了学生新的学习方法,加强了学生团结、协作的能力;讨论中充分展示学生语言的零乱性,培养了学生良好的思维能力、语言运用能力。适时对学生积极评价,体现了平等的师生关系,张扬了学生的个性,体现了《标准》的人文化。 §2.3.1 运用公式法(一) 教学目标 (一)知识认知要求 1.使学生了解运用公式法分解因式的意义; 2.使学生掌握用平方差公式分解因式. 3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式. (二)能力训练要求 1.通过对平方差公式特点的辨析,培养学生的观察能力. 2.训练学生对平方差公式的运用能力. (三)情感与价值观要求 在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法. 教学重点 让学生掌握运用平方差公式分解因式. 教学难点 将单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力. 教学过程 一、创设问题情境,引入新课 在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式. 如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法. 二、新课讲解 1.请看乘法公式 (a+b)(a-b)=a2-b2 (1) 左边是整式乘法,右边是一个多项式,把这个等式反过来就是 a2-b2=(a+b)(a-b) (2) 左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解? 符合因式分解的定义,因此是因式分解. 对,是利用平方差公式进行的因式分解.第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式. 2.公式讲解 请大家观察式子a2-b2,找出它的特点. 是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差. 如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积. 如x2-16=(x)2-42=(x+4)(x-4). 9 m 2-4n2=(3 m )2-(2n)2 =(3 m +2n)(3 m -2n) 3.例题讲解 [例1]把下列各式分解因式: (1)25-16x2; (2)9a2-b2. 解:(1)25-16x2=52-(4x)2 =(5+4x)(5-4x); (2)9a2-b2=(3a)2-(b)2 =(3a+b)(3a-b). [例2]把下列各式分解因式: (1)9(m+n)2-(m-n)2; (2)2x3-8x. 解:(1)9(m +n)2-(m-n)2 =[3(m +n)]2-(m-n)2 =[3(m +n)+(m-n)][3(m +n)-(m-n)] =(3 m +3n+ m-n)(3 m +3n-m +n) =(4 m +2n)(2 m +4n) =4(2 m +n)(m +2n) (2)2x3-8x=2x(x2-4) =2x(x+2)(x-2) 说明:例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法. 补充例题:判断下列分解因式是否正确. (1)(a+b)2-c2=a2+2ab+b2-c2. (2)a4-1=(a2)2-1=(a2+1)·(a2-1). 解:(1)不正确.本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1)中还是多项式的形式,因此,最终结果是未对所给多项式进行因式分解. (2)不正确.错误原因是因式分解不到底,因为a2-1还能继续分解成(a+1)(a-1). 应为a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1). 三、课堂练习 (一)随堂练习 1.判断正误 (1)x2+y2=(x+y)(x-y); (2)x2-y2=(x+y)(x-y); (3)-x2+y2=(-x+y)(-x-y); (4)-x2-y2=-(x+y)(x-y). 2.把下列各式分解因式 解:(1)a2b2-m2 (2)(m-a)2-(n+b)2 (3)x2-(a+b-c)2 (4)-16x4+81y4 (二)补充练习:把下列各式分解因式 (1)36(x+y)2-49(x-y)2; (2)(x-1)+b2(1-x); (3)(x2+x+1)2-1. 四.课时小结 我们已学习过的因式分解方法有提公因式法和运用平方差公式法.如果多项式各项含有公因式,则第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行. 第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止. 五.课后作业 习题2.4 六.活动与探究 把(a+b+c)(bc+ca+ab)-abc分解因式 解:(a+b+c)(bc+ca+ab)-abc =[a+(b+c)][bc+a(b+c)]-abc =abc+a2(b+c)+bc(b+c)+a(b+c)2-abc=a2(b+c)+bc(b+c)+a(b+c)2 =(b+c)[a2+bc+a(b+c)] =(b+c)[a2+bc+ab+ac] =(b+c)[a(a+b)+c(a+b)] =(b+c)(a+b)(a+c) §2.3.2 运用公式法(二) 教学目标 (一)知识认知要求 1.使学生会用完全平方公式分解因式. 2.使学生学习多步骤,多方法的分解因式. (二)能力训练要求 在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力. (三)情感与价值观要求 通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力. 教学重点 让学生掌握多步骤、多方法分解因式方法. 教学难点 让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式. 教学过程 一、创设问题情境,引入新课 因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.还有哪些乘法公式可以用来分解因式呢? 在前面我们不仅学习了平方差公式 (a+b)(a-b)=a2-b2 而且还学习了完全平方公式 (a±b)2=a2±2ab+b2本节课,我们就要学习用完全平方公式分解因式. 二、讲授新课 1.推导用完全平方公式分解因式的公式以及公式的特点. 由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢? 将完全平方公式倒写: a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2. 便得到用完全平方公式分解因式的公式. 请大家互相交流,找出这个多项式的特点. 从上面的式子来看,两个等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍.凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解. 左边的特点有(1)多项式是三项式; (2)其中有两项同号,且此两项能写成两数或两式的平方和的形式; (3)另一项是这两数或两式乘积的2倍. 右边特点:这两数或两式和(差)的平方. 用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方. 形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法. 练一练.下列各式是不是完全平方式? (1)a2-4a+4; (2)x2+4x+4y2; (3)4a2+2ab+b2; (4)a2-ab+b2; 2.例题讲解 [例1]把下列完全平方式分解因式: (1)x2+14x+49; (2)(m+n)2-6(m +n)+9. 分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式.公式中的a,b可以是单项式,也可以是多项式. 解:(1)x2+14x+49=x2+2×7x+72=(x+7)2 (2)(m +n)2-6(m +n)+9=(m +n)2-2·(m +n)×3+32=[(m +n)-3]2=(m +n-3)2. [例2]把下列各式分解因式: (1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy. 分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式. 如果三项中有两项能写成两数或式的平方,但符号不是“+”号时,可以先提取“-”号,然后再用完全平方公式分解因式. 解:(1)3ax2+6axy+3ay2 =3a(x2+2xy+y2) =3a(x+y)2 (2)-x2-4y2+4xy =-(x2-4xy+4y2) =-[x2-2·x·2y+(2y)2] =-(x-2y)2 三、课堂练习 1.随堂练习见书本 2.补充练习:把下列各式分解因式: (1)(x+y)2+6(x+y)+9; (2)-+n2; (3)4(2a+b)2-12(2a+b)+9; (4)x2y-x4- 四.课时小结 这节课我们学习了用完全平方公式分解因式.它与平方差公式不同之处是: (1)要求多项式有三项. (2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负. 同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式. 五.课后作业 习题2.5 六.活动与探究 写出一个三项式,再把它分解因式(要求三项式含有字母a和b,分数、次数不限,并能先用提公因式法,再用公式法分解因式. 分析:本题属答案不固定的开放性试题,所构造的多项式同时具备条件:①含字母a和b;②三项式;③提公因式后,再用公式法分解. 参考答案: 4a3b-4a2b2+ab3 =ab(4a2-4ab+b2) =ab(2a-b)2 七、教学反思: 本节课通过整式乘法的完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;在运用公式法分解因式中,要有意识的引导学生,再熟悉乘法公式的来历,以及乘法公式的结构,多注意培养学生认真观察地良好习惯。基本完成了既定的教学目标,是一堂较成功的新课。 §2.4 回顾与思考 教学目标 (一)知识认知要求 1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式. 2.熟悉本章的知识结构图. (二)能力训练要求 通过知识结构图的教学,培养学生归纳总结能力,在例题的教学过程中培养学生分析问题和解决问题的能力. (三)情感与价值观要求 通过因式分解综合练习,提高学生观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识. 教学重点 综合应用提公因式法,运用公式法分解因式. 教学难点 利用分解因式进行计算及讨论. 教学过程 一、创设问题情境,引入新课 前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.今天,我们来综合总结一下. 二、新课讲解 (一)讨论推导本章知识结构图 请大家先回忆一下我们这一章所学的内容有哪些? (1)有因式分解的意义,提公因式法和运用公式法的概念. (2)分解因式与整式乘法的关系. (3)分解因式的方法. 很好.请大家互相讨论,能否把本章的知识结构图绘出来呢?(若学生有困难,教师可给予帮助) (二)重点知识讲解 下面请大家把重点知识回顾一下. 1.举例说明什么是分解因式. 如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2) 把多项式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式. 学习因式分解的概念应注意以下几点: (1)因式分解是一种恒等变形,即变形前后的两式恒等. (2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止. 2.分解因式与整式乘法有什么关系? 分解因式与整式乘法是两种方向相反的变形.如:ma+mb+mc=m(a+b+c)从左到右是因式分解,从右到左是整式乘法. 3.分解因式常用的方法有哪些? 提公因式法和运用公式法.可以分别用式子表示为:ma+mb+mc=m(a+b+c) a2-b2=(a+b)(a-b) a2±2ab+b2=(a±b)2 4.例题讲解 [例1]下列各式的变形中,哪些是因式分解?哪些不是?说明理由. (1)x2+3x+4=(x+2)(x+1)+2 (2)6x2y3=3xy·2xy2 (3)(3x-2)(2x+1)=6x2-x-2 (4)4ab+2ac=2a(2b+c) 分析:解答本题的依据是因式分解的定义,即把一个多项式化成几个整式的积的形式是因式分解,否则不是. 解:(1)不是因式分解,因为右边的运算中还有加法. (2)不是因式分解,因为6x2y3不是多项式而是单项式,其本身就是积的形式,所以不需要再因式分解. (3)不是因式分解,而是整式乘法. (4)是因式分解. [例2]将下列各式分解因式. (1)8a4b3-4a3b4+2a2b5; (2)-9ab+18a2b2-27a3b3; (3)-x2; (4)9(x+y)2-4(x-y)2; 解:(1)8a4b3-4a3b4+2a2b5 =2a2b3(4a2-2ab+b2); (2)-9ab+18a2b2-27a3b3 =-(9ab-18a2b2+27a3b3) =-9ab(1-2ab+3a2b2); (3)-x2=()2-(x)2 =(+ x)(-x); (4)9(x+y)2-4(x-y)2 =[3(x+y)]2-[2(x-y)]2 =[3(x+y)+2(x-y)][3(x+y)-2(x-y)] =(3x+3y+2x-2y)(3x+3y-2x+2y) =(5x+y)(x+5y); [例3]把下列各式分解因式: (1)x7y3-x3y3; (2)16x4-72x2y2+81y4; 解:(1)x7y3-x3y3 =x3y3(x4-1) =x3y3(x2+1)(x2-1) =x3y3(x2+1)(x+1)(x-1) (2)16x4-72x2y2+81y4 =(4x2)2-2·4x2·9y2+(9y2)2 =(4x2-9y2)2 =[(2x+3y)(2x-3y)]2 =(2x+3y)2(2x-3y)2. 从上面的例题中,大家能否总结一下分解因式的步骤呢? 分解因式的一般步骤为: (1)若多项式各项有公因式,则先提取公因式. (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式. (3)每一个多项式都要分解到不能再分解为止.三、课堂练习 1.把下列各式分解因式 (1)16a2-9b2; (2)(x2+4)2-(x+3)2; (3)-4a2-9b2+12ab; (4)(x+y)2+25-10(x+y) 2.利用因式分解进行计算 (1)9x2+12xy+4y2,其中x=,y=-; (2)()2-()2,其中a=-,b=2. 四.课时小结 1.师生共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解. 2.利用因式分解简化某些计算. 五、课后作业 复习题 A组 六、活动与探究 求满足4x2-9y2=31的正整数解. 分析:因为4x2-9y2可分解为(2x+3y)(2x-3y)(x、y为正整数),而31为质数. 所以有或 解:∵4x2-9y2=31 ∴(2x+3y)(2x-3y)=1×31 ∴或 解得或 因所求x、y为正整数,所以只取x=8,y=5. 七、教学反思: 本节课采用先个人、后小组、再全班学习的形式;重视引导每个学生都参与复习过程,并把思维训练落实到全班每个学生身上。给学生充分的时间进行独立、自由的回顾思考。新教材提出了一个严峻的问题:课堂教学的重心必须转变,由教向学的转变。过去是“以教为主”,现在要“以学为主”;过去是“重教”,现在要“重学”;过去提倡“为教服务”,现在鼓励“为学服务”。过去老师们是带着知识走向学生,现在则要带着学生走向知识。展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




河南省郑州市第九十六中八年级数学 第二章《分解因式》教案.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/7628045.html