测量平差课件之二.ppt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测量 课件
- 资源描述:
-
测 量 平 差 太原理工大学测绘科学与技术系1.第二章第二章平差数学模型与最小二乘原理平差数学模型与最小二乘原理 2.1 测量平差概述 2 测量平差的数学模型 3 函数模型的线性化 4 最小二乘原理 3.2-1 2-1 测量平差概述量平差概述 在测量工作中,为了确定待定点的高程,需要建立水准网,为了确定待定点的平面坐标,需要建立平面控制网(包括测角网、测边网、边角网),我们常把这些网称为几何模型。每种几何模型都包含有不同的几何元素,如水准网中包括点的高程、点间的高差,平面网中包含角度、边长、边的坐标方位角以及点的二维或三维坐标等元素。这些元素都被称为几何量。4.测量平差概述在诸多几何量中,有的可以直接测量,但更多的是通过测定其它一些量来间接求出。如根据一点的坐标,通过直接测定的角度和距离求定另一些点的坐标;根据一点的高程,通过直接测定的高差求定另一些点的高程等等。这也充分说明要确定一个几何模型,并不需要知道其中所有元素的大小,只需知道其中的一部分就可以了,其它元素可以通过它们之间的函数描述而确定出来,这种描述所求量与已知量之间的关系式称为函数模型。5.测量平差概述在测量工作中,并不是对模型中的所有量都进行观测。假设对模型中的几何量总共观测n个,当观测值个数小于必要观测个数,即nt,设:r=n-t 式中n是观测值个数,t是必要观测个数,r称为多余观测个数,在统计学中也叫自由度。6.测量平差概述有了多余观测,观测值之间必然不能满足理论上的条件方程,即观测值产生了矛盾,从而使观测值不能完全吻合于几何模型。为了消除矛盾,通常用另一组被称为“观测值估值(又叫平差值、最或是值、最或然值)来代替观测值。任何一个观测值估值都可以看作是一个改正了的观测值,是由观测值加上改正数而得到,观测值的改正数,它们必须在计算之前被计算出来。但这种改正数有无数多组(如:对三角形闭合差的分配),但从统计学角度讲,只有一组改正数能得到最优解。为求唯一的一组最优改正数,必须附加一定的约束条件,我们把按照某一准则求得观测值新的一组最优估值的计算过程叫平差。7.2-2 测量平差的数学模型量平差的数学模型 在测量工作中,涉及的是通过观测量确定某些几何量的大小等有关数量问题,因此,常考虑如何建立相应的数学模型及如何解算这些模型。由于测量观测值是一种随机变量,所以,平差的数学模型与传统数学上的模型不同,它不仅要考虑描述已知量与待求量之间的函数模型,还要考虑随机模型,在研究任何平差方法时,函数模型和随机模型必须同时予以考虑。8.函函 数数 模模 型型 1.条件平差法条件平差法 2.附有参数的条件平差法附有参数的条件平差法 3.间接平差法接平差法(参数平差法参数平差法)4.附有限制条件的附有限制条件的间接平差接平差 5.附有条件的条件平差(附有条件的条件平差(综合平差模型)合平差模型)9.1.条件平差法条件平差法一般而言,如果有n个观测值,必要观测个数为t,则应列出r=n-t个条件方程,即 如果条件方程为线性形式,则可以直接写为 将 代入,并令 则上式即为条件平差的函数模型。以此模型为基础的平差计算称为条件平差法。10.2.附有参数的条件平差法附有参数的条件平差法在平差问题中,设观测值个数为n,必要观测个数为t,则可以列出r=n-t个条件方程,现又增设了u个独立量作为未知参数,且0 ut,每增加一个参数应增加一个条件方程,因此,共需列出r+u个条件方程,以含有参数的条件方程为平差函数模型的平差方法,称为附有参数的条件平差法。11.2.附有参数的条件平差法附有参数的条件平差法一般而言,在某一平差问题中,观测值个数为n,必要观测个数为t,多余观测个数为r=n-t,再增选u个独立参数,0 ut个参数,其中包含t个独立参数,则多选的s=u-t个参数必定是t个独立参数的函数,即在u个参数之间存在着s个函数关系式。方程的总数c=r+u=r+t+s=n+s个,建立模型时,除了列立n个观测方程外,还要增加参数之间满足的s个条件方程,以此作为平差函数模型的平差方法称为附有条件的间接平差。15.4.附有限制条件的附有限制条件的间接平差接平差其函数模型的一般形式为 线性形式的函数模型为 将 代入,并令 则 这就是附有条件的间接平差的函数模型 16.5.附有条件的条件平差(附有条件的条件平差(综合平差模型)合平差模型)附有条件的条件平差的基本思想是:对于一个平差问题,若增选了u个参数,不论ut,也不论参数是否独立,每增加一个参数则肯定相应地增加1个方程,故方程的总数为r+u个。如果在u个参数中有s个是不独立的,或者说在这u个参数中存在着s个函数关系式,则应列出s个的限制条件方程,除此之外再列出 c=r+u-s 个一般条件方程,形成函数模型。17.5.附有条件的条件平差(附有条件的条件平差(综合平差模型)合平差模型)函数模型如下 若为线性形式,则为 考虑到 ,则这就是附有条件的条件平差的函数模型。18.平差的随机模型平差的随机模型 进行平差时除建立其函数模型外,还要同时考虑到它的随机模型,亦即观测向量的协方差阵:式中D为L的协方差阵,Q为L的协因数阵,P为L的权阵,为单位权方差。函数模型连同随机模型,就称为平差的数学模型。在进行平差计算前,函数模型和随机模型必须首先被确定,前者按上面介绍的方法建立,后者须知道P、Q、D其中之一。一般是按第一章介绍的方法进行平差前经验定权。可以通过平差计算求出其估值,然后根据公式 求得D的估值。19.2-3 2-3 函数模型的函数模型的线性化性化 设有函数按台劳级数在近似值处展开,略去二次和二次以上各项,于是有 若令 则函数的线性形式为20.条件平差法条件平差法线性化后的形式性化后的形式 对照线性化一般形式,则有 令 有 上式即为条件平差的线性函数模型。21.附有参数的条件平差附有参数的条件平差线性化后的形式性化后的形式对照线性化一般形式,则有 令 有 上式即为附有参数的条件平差的线性函数模型。22.间接平差法接平差法线性化后的形式性化后的形式对照线性化一般形式,则有 令 有 上式即为间接平差法平差的线性函数模型。23.附有条件的附有条件的间接平差接平差线性化后的形式性化后的形式因为令则线性化后的模型为 24.附有条件的条件平差附有条件的条件平差线性化后的形式性化后的形式对照线性化一般形式,则有附有条件的条件平差的线性函数模型。25.2-4 2-4 最小二乘原理最小二乘原理 如果只对几何模型中的必要元素进行观测,而没有多余观测,则在观测值之间不可能产生任何函数关系式,也不存在平差问题。只有在有了多余观测的情况下,才会产生平差问题。例如为确定一个三角形的大小和形状,必要观测数为t=3,如果实际观测了一边三角(n=4),则存在一个多余观测(r=n-t=1)。现以一边和其中任意两个角作为一个组合来确定三角形的大小和形状,则有三种组合,由于观测值不可避免地含有偶然误差,三种组合所计算的结果将出现微小差别,这说明在具有多余观测的情况下,将无法唯一的确定模型的解。26.2-4 2-4 最小二乘原理最小二乘原理从函数模型来考虑,由于存在一个多余观测,三个内角真值之间就存在一个条件方程,即:考虑到 ,代入上式得 式中 称为条件方程的闭合差或常数项,它是可以根据观测值计算出来的。由于观测值的真值不知道,所以真误差是未知量。要确定真误差的值,显然其解是不唯一的。要确定满足函数模型的唯一的一组解,如果不另外附加一定的约束条件,那是不可能的。到底应该采用什么样的约束条件,才能使模型得到一组具有最佳性质的解呢?27.2-4 2-4 最小二乘原理最小二乘原理 在测量工作及其它科学工程领域,应用最早也最广泛的就是所谓的“最小二乘准则”:在满足最小二乘准则下求得的真误差称为估值,用表示,测量工作中习惯上用符号代替,因此最小二乘准则常表达为:由于根据最小二乘准则可以求得真误差估值,也就可以求得观测值的估值,其计算公式为 式中 称为观测值的改正数,称为观测值 的估值,或平差值、最或然值。28.2-4 2-4 最小二乘原理最小二乘原理当 为非对角阵,表示观测值相关,按 进行的平差称为相关观测平差。当 为对角阵,表示观测值不相关,此时最小二乘准则可表示为纯量形式,即:特别地,当观测值不相关且等精度时,权阵为单位阵,此时最小二乘准则可表示为 估计的准则有许多种,最小二乘准则是其中的一种,还有一种常用的估计叫做最大似然估计,这种估计要求事先知道观测量的概率分布函数。一般认为测量观测值向量是服从正态分布的随机变量,其概率分布密度函数为29.2-4 2-4 最小二乘原理最小二乘原理 所谓极大似然估计,就是要在概率分布密度函数达到极大的条件下来对真误差进行估计。显然,当 达到极小时,概率分布密度函数可取得极大值,仍用 表示对的 估计结果,即要求:相当于 显然,当观测向量服从正态分布时,极大似然估计与最小二乘估计的结果是一致的。30.再 见31.GPS卫星导航定位原理与方法 著译者:刘基余 出版者:科学出版社 32.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




测量平差课件之二.ppt



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/759032.html