分享
分销 收藏 举报 申诉 / 5
播放页_导航下方通栏广告

类型横截面数据、时间序列数据、面板数据.docx

  • 上传人:pc****0
  • 文档编号:7414775
  • 上传时间:2025-01-03
  • 格式:DOCX
  • 页数:5
  • 大小:46.84KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    横截面 数据 时间 序列 面板
    资源描述:
    横截面数据、时间序列数据、面板数据 横截面数据:(时间固定) 横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。 如: 时间序列数据:(横坐标为t,纵坐标为y) 在不同时间点上收集到的数据,这类数据反映某一事物、现象等随时间的变化状态或程度。 如: 面板数据:(横坐标为t,斜坐标为y,纵坐标为z) 是截面数据与时间序列数据综合起来的一种数据类型。其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。 举例: 如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。 如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。 如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12; 上海市分别为9、10、11、12、13; 天津市分别为5、6、7、8、9; 重庆市分别为7、8、9、10、11(单位亿元)。 这就是面板数据。 关于面板数据的统计分析   在写论文时经常碰见一些即是时间序列又是截面的数据,比如分析1999-2010的公司盈余管理影响因素,而影响盈余管理的因素有6个,那么会形成如下图的数据 公司1 公司2 公司100 因素1 …… 因素6 盈余管理程度 因素1 …… 因素6 盈余管理程度 因素1 …… 因素6 盈余管理程度 1999 2000 …… 2010      如上图所示的数据即为面板数据。显然面板数据是三维的,而时间序列数据和截面数据都是二维的,把面板数据当成时间序列数据或者截面数据来处理都是不合适的。      处理面板数据的软件较多,一般使用Eviews6.0、Stata等。个人推荐使用Stata,因为Stata比较适合处理面板数据,且个性化强。以下以Stata11.0为例来讲解怎么样处理面板数据。 由于面板数据的存储结构与我们通常使用的存储结构不太一样,所在统计分析前,最好在excel中整理一下数据,形成如下图所示的数据 年份 公司名称 因素1 因素2 …… 因素6 盈余管理程度 1999 公司1 2000 公司1 …… 公司1 2010 公司1 1999 公司2 2000 公司2 …… 公司2 2010 公司2 变量定义及输入数据 启动Stata11.0,Stata界面有4个组成部分,Review(在左上角)、Variables(左下角)、输出窗口(在右上角)、Command(右下角)。首先定义变量,可以输入命令,也可以通过点击Data----Create new Variable or change variable。 特别注意,这里要定义的变量除了因素1、因素2、……因素6、盈余管理影响程度等,还要定义年份和公司名称两个变量,这两个变量的数据类型(Type)最好设置为int(整型),公司名称不要使用中文名称或者字母等,用数字代替。定义好变量之后可以输入数据了。数据可以直接导入(File-Import),也可以手工录入或者复制粘贴(Data-Data Edit(Browse)),手工录入数据和在excel中的操作一样。 以上面说的为例,定义变量 year、 company、 factor1、 factor2、 factor3、 factor4、 factor5、 factor6、 DA。 变量company 和year分别为截面变量和时间变量。显然,通过这两个变量我们可以非常清楚地确定panel data 的数据存储格式。因此,在使用STATA 估计模型之前,我们必须告诉它截面变量和时间变量分别是什么,所用的命令为tsset,命令为: tsset company year 输出窗口将输出相应结果。 由于面板数据本身兼具截面数据和时间序列二者的特性,所以对时间序列进行操作的运算同样可以应用到面板数据身上。这一点在处理某些数据时显得非常方便。如,对于上述数据,我们想产生一个新的变量Lag _factor1 ,也就是factor1 的一阶滞后,那么我们可以采用如下命令: gen Lag_factor1=L.factor1 统计描述: 在正式进行模型的估计之前,我们必须对样本的基本分布特性有一个总体的了解。对于面板数据而言,我们至少要知道我们的数据中有多少个截面(个体) ,每个截面上有多少个观察期间,整个数据结构是平行的还是非平行的。进一步地,我们还要知道主要变量的样本均值、标准差、最大值、最小值等情况。这些都可以通过以下三个命令来完成: xtdes 命令用于初步了解数据的大体分布状况,我们可以知道数据中含有多少个截面,最大和最小的时间跨度是多少。在某些要求使用平行面板数据的情况下,我们可以采用该命令来诊断处理后的数据是否为平行数据。Xtsum用来查询对组内、组间、整体计算各个变量的基本统计量(如均值、方差等)。为了方便,以下的举例都只用factor1,factor2两个自变量。 xtdes DA factor1 facto2 xtsum DA factor1 facto2 模型回归。 常用的处理面板数据的模型有混合OLS模型、固定效应模型、随机效应模型。各个模型的区别请上网查查。下面说说各个模型的命令: 混合OLS模型输入命令: regress DA factor1 facto2 固定效应模型输入命令: xtreg DA factor1 factor , fe 随机效应模型输入命令: xtreg DA factor1 factor , re 模型的选择及检验 固定效应模型要检验个体效应的显著性,这可以通过固定效应模型回归结果的最后一行的F统计量看出,F越大越好,可以得出固定效应模型优于混合OLS模型的结论。随机效应模型要检验随机效应是否显著,要输入命令: xttest0 如果检验得到的p值为0,则随机效应显著,随机效应模型也优于固定效应模型。至于固定效应模型与随机效应模型选哪一个,则要通过hausman检验来得出。 Hausman检验 Hausman检验的原假设是固定效应模型优于随机效应模型,如果hausman检验的p值为0,则接受原假设,使用固定效应模型。相关命令: qui xtreg DA factor1 factor2 ,fe est store fe qui xtreg DA factor1 factor2 ,re est store re hausman fe 检验序列相关 固定效应模型使用xtserial命令,随机效应模型使用xttest1命令: qui xtreg DA factor1 factor2 ,re xttest1…………对于随机效应模型 xtserial DA factor1 factor2 如果没有xtserial命令即输入上面的命令后弹出no command,则输入findit xtserial.ado可以自动搜索到进行安装。 检验截面相关性及截面异方差性 由于面板数据都是针对国家或公司的,因此截面间往往会存在相关性,我们可以利用xttest2 命令来检验固定效应模型中截面间的相关性是否显著。 qui xtreg DA factor1 factor2 ,fe xttest2 检验截面异方差性输入命令 Xttest3
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:横截面数据、时间序列数据、面板数据.docx
    链接地址:https://www.zixin.com.cn/doc/7414775.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork