九年级数学上册 24.2.1 点和圆的位置关系教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学上册 24.2.1 点和圆的位置关系教案 新版新人教版-新版新人教版初中九年级上册数学教案 九年级 数学 上册 24.2 位置 关系 教案 新版 新人 初中 数学教案
- 资源描述:
-
点与圆的位置关系 课题名称 24.2.1点与圆的位置关系 课型 新课 授课对象 九(4、7) 任课教师 学情分析 作为九年级的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。 教 材 分 析 知识点 点和圆的位置关系 重点 点和圆的位置关系,过不在同一直线上的三点作圆的方法,运用反证法进行推理论证. 难点 过不在同一条直线上的三点作圆,反证法的证明思路 易混 (错)点 过不在同一直线上的三点作圆的方法,运用反证法进行推理论证 考点 点和圆的位置关系 学科特性 教学目标 知识与技能 1.理解点与圆的位置关系并掌握其运用. 2.理解不在同一直线上的三个点确定一个圆并掌握它的运用. 3.了解三角形的外接圆和三角形外心的概念及反证法的证明思想. 过程与方法 学生通过自主探索和交流合作的过程,经历探究一个点、两个点、三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.从三点到圆心的距离逐渐引入点P到圆心距离与点和圆位置关系的结论,并运用它们解决一些相关问题. 情感态度与价值观 激发学生观察、探究、发现数学问题的兴趣和欲望,发展实践能力与创新精神. 教学方法 与手段 自主—探究—合作 主要参考资料 九年级教学参考资料和创优教案 自信课堂教学进程 一、激趣导入 生发自信 前几节课我们学习了圆的性质,而圆作为一种重要的几何图形,还有好多知识,这节课开始我们来学习与圆有关的位置关系. 二、自主合作 彰显自信 探究(一): (一)点与圆的位置关系 在纸上画一个圆,再在圆上任取一点,该点到圆心的距离有何特点?如果在圆外取一点呢?圆内呢?. 得到:圆上的点到圆心的距离都等于半径;圆外的点到圆心的距离大于半径;圆内的点到圆心的距离小于半径. 即点与圆的位置关系有三种:点在圆内;点在圆上;点在圆外. 设⊙O的半径为r,点P到圆心的距离为OP=d, 点P在圆外d>r;点P在圆上d=r;点P在圆内d<r. 反之,d>r点P在圆外;d=r点P在圆上;d<r点P在圆内. 综合可得:设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r 探究(二): (二)确定圆的条件 1.作图 经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢? ①作圆,使该圆经过已知点A,你能作出几个这样的圆? ②作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么? ③作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆? 分析:一个圆的圆心只确定它的位置,半径只确定它的大小,如果它的圆心和半径都确定了,那么这个圆的大小和位置就唯一确定了. 由③可知:①不在同一直线上的三个点确定一个圆.②经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.③外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心. 2.反证法 思考:经过同一条直线上的三个点能不能作出一个圆? 证明:如图,假设过同一直线上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线上,又在线段BC的垂直平分线上,即点P为与的交点,而⊥,⊥,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆. 上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法.在某些情景下,反证法是很有效的证明方法. 三、展示提升 赏识自信 1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心. 分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心. 2.如图,已知梯形ABCD中,AB∥CD,AD=BC,AB=48cm,CD=30cm,高27cm,求作一个圆经过A、B、C、D四点,写出作法并求出这圆的半径(比例尺1:10) 分析:要求作一个圆经过A、B、C、D四个点,应该先选三个点确定一个圆,然后证明第四点也在圆上即可.要求半径就是求OC或OA或OB,因此,要在直角三角形中进行,不妨设在Rt△EOC中,设OF=x,则OE=27-x由OC=OB便可列出,这种方法是几何问题代数方法解(数形结合法). 四、拓展延伸 完善自信 1、如图,已知梯形ABCD中,AB∥CD,AD=BC,AB=48cm,CD=30cm,高27cm,求作一个圆经过A、B、C、D四点,写出作法并求出这个圆的半径 A B C D 2、如图,用三个边长为1的正方形组成的一个品字型轴对称图形,求能将三个正方形完全覆盖的圆的最小半径. 巩固练习、考点早实践 1、如果点A到⊙O的最短举例是3cm,最长距离是6cm,则⊙O的半径是 cm. 2、已知Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则它的外心与顶点C的距离为 cm. 3、已知⊙O的半径为1,点P与圆心O的距离为为d,且方程没有实数根,则点P与⊙O的位置关系是 . 4如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=90°,B为弧AN的中点,P为直径MN上一动点,求PA+PB的最小值. 板书设计 课题 点和圆的位置关. 2.三点定圆 如设⊙O的半径为r,点P到圆的距离为d, 则有: (1)点P在圆外 d =r (2)点P在圆上 d =r (3)点P在圆内 d =r 3.三角形外接圆 4.三角形外心的概念 5.反证法 课后反思展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




九年级数学上册 24.2.1 点和圆的位置关系教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/7409682.html