数学建模习题指导.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 习题 指导
- 资源描述:
-
数学建模习题指导 第一章 初等模型 讨论与思考 讨论题1 大小包装问题 在超市购物时你注意到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g装的每支1.50元,120g装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。 (1)分析商品价格C与商品重量w的关系。 (2)给出单位重量价格c与w的关系,并解释其实际意义。 提示: 决定商品价格的主要因素:生产成本、包装成本、其他成本。 单价随重量增加而减少 单价的减少随重量增加逐渐降低 思考题2 划艇比赛的成绩 赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。各种艇虽大小不同,但形状相似。T.A.McMahon比较了各种赛艇1964—1970年四次2000m比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。建立数学模型解释比赛成绩与浆手数量之间的关系。 各种艇的比赛成绩与规格 艇种 2000m成绩t(min) 艇长l(m) 艇宽 b(m) l/b W0 (kg) 与n之比 1 2 3 4 平均 单人 7.16 7.25 7.28 7.17 7.21 7.93 0.293 27.0 16.3 双人 6.87 6.92 6.95 6.77 6.88 9.76 0.356 27.4 13.6 四人 6.33 6.42 6.48 6.13 6.32 11.75 0.574 21.0 18.1 八人 5.87 5.92 5.82 5.73 5.84 18.28 0.610 30.0 14.7 第二章 线性代数模型 森林管理问题 森林中的树木每年都要有一批砍伐出售。为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。被出售的树木,其价值取决于树木的高度。开始时森林中的树木有着不同的高度。我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。 思考: 试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。 练习: 将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存 达到3架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 第三章 优化模型 讨论题 1)最优下料问题 用已知尺寸的矩形板材加工半径一定的圆盘。给出几种加工排列方法,比较出最优下料方案。 2)广告促销竞争问题 甲乙两公司通过广告竞争销售商品,广告费分别为 x 和 y。设甲乙公司商品的售量在两公司总售量中所占份额是它们的广告费在总广告费中所占份额的函数 又设公司的收入与售量成正比,从收入中扣除广告费后即为公司的利润。试构造模型的图形,并讨论甲公司怎样确定广告费才能使利润最大。 (1)令 (2)写出甲公司的利润表达式 对一定的 y ,使 p(x) 最大的 x 的最优值应满足什么关系。用图解法确定这个最优值。 练习1 三个家具商店购买办公桌:A需要30张,B需要50张,C需要45张。这些办公桌由两个工厂供应:工厂1生产70张,工厂2生产80张。下表给出了工厂和商店的距离(单位公里) ,假设每张每公里运费0.5元。寻求一个运送方案使运费最少? 工厂 家具店 A B C 1 10 5 30 2 7 20 5 A 1 B 2 C 商店 工厂 A B C 1 70 2 80 30 50 45 练习2 下料问题 某车间有一批长度为180公分的钢管(数量充分多)今为制造零件,要将其截成三种不同长度的管料,70公分,52公分,35公分。生产任务规定,这三种料的需要量分别不少于100根,150根,100根。我们知道,截分钢管时不免要产生“边角料”,从节约原料的观点来考虑,应该采取怎样的截法,才能在完成任务的前提下,使总的边角料达到最小限度? 所 有 可 能 的 截 法 截法 (1) (2) (3) (4) (5) (6) (7) (8) 需要量 长 度 70 52 35 2 1 1 1 0 0 0 0 0 2 1 0 3 2 1 0 1 0 1 3 0 2 3 5 100 150 100 边料(cm) 5 6 23 5 24 6 23 5 现用 分别表示采用每个截法的次数,则问题变成在约束条件: 下求目标函数: 的最小值。 实例1 加工奶制品的生产计划 一奶制品厂用牛奶生产A和B两种奶制品,一桶牛奶可以在设备甲上用12 小时加工成3 公斤A,或者在设备乙上用8 小时加工成4 公斤B。根据市场需求,生产的A,B全能出售,且每公斤A获利24元,每公斤B获利16元。现在加工每天能得到50 桶牛奶的供应,每天正式工人总劳动时间为480小时,并且设备甲每天至多能加工100 公斤A,设备乙的加工能力没有限制。试为该厂制订一个生产计划,使每天获利最大,并试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题: (1)若用35元买到1 桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶? (2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元? (3)由于市场需求变化,每公斤A获利增加到30元,应否改变生产计划? 第四章 概率统计模型 练习: 利用上述模型计算,若每份报纸的购进价为0.75元,售出价为1元,退回价为0.6元,需求量服从均值500份,均方差50份的正态分布,报童每天应购进多少份报纸才能使平均收入最高,最高收入是多少? 用本章所学方法,思考以下几个方面的问题: 1)酒店 酒店接受房间预订主要是建立在诚信之上,因此通常不会再接受有过失信记录的顾客的预订。一些酒店在接受预订时会要求顾客交纳押金,以此来确保顾客住房的概率(施行这种方案的一般是低价酒店,因为它们的周转资金往往不多),而另一些酒店则可能会给长期订房或是预付房费的顾客打折。这种多价格系统的经营方式是可以考虑的。 2)汽车出租公司 汽车出租公司一般会保留固定数量的汽车(至少在短期内)以出租给顾客。出租公司可能会为频繁租借汽车的顾客打折,以此来确保公司能有最低量的收入。而一些长期出租品(一次出租一周或一个月)也会标上优惠的价格,因为这给出了一个至少确定了未来的一段日子会有收入的策略。在预测一些车辆的预订可能会被取消的情况下,一间公司有可能充分地留出比它们计划中要多的汽车。 3)图书馆 图书馆都有可能购买一些畅销书籍的多种版本。特别是在学院或大学图书馆里,时常购买一系列课本。某些版本极有可能仅限在图书馆内,以方便学生们的使用。可以尝试建立书籍使用的模型。 练习: 下表给出了某工厂产品的生产批量与单位成本(元)的数据,从散点图,可以明显的发现,生产批量在500以内时,单位成本对生产批量服从一种线性关系,生产批量超过500时服从另一种线性关系,此时单位成本明显下降。希望你构造一个合适的回归模型全面地描述生产批量与单位成本的关系。 生产 批量 650 340 400 800 300 600 720 480 440 540 750 单位 成本 2.48 4.45 4.52 1.38 4.65 2.96 2.18 4.04 4.20 3.10 1.50 第五章 离散模型 思考:多名专家的综合决策问题 五 练习 1合理分配资金问题 某工厂有一笔企业留成利润,要由领导决定如何利用。可供选择的方案有:以奖金名义发给职工;扩建集体福利设施;购进新设备等。为了进一步促进企业发展,如何合理使用这笔利润。 2 足球队排名次(CUMCM)1993年 B 题 China Undergraduate Mathematical Contest in Modeling 3 自己设计有关题目 如:高考填报志愿问题, 选择职业问题,排名(排序)问题。 合理分配资金问题 1 层次结构模型 合理利用企业利润Z 提高企业的技术水平 改善职工的生活条件 调动职工的 积极性 引进新设备 扩建福利事业 发奖金 2 求解 Z-C矩阵 Z C1 C2 C3 W C1 C2 C3 1 1/5 1/3 5 1 3 3 1/3 1 0.105 0.637 0.258 CI RI CR 3.038 0.019 0.58 0.033<0.1 OK C-P矩阵 C1 P1 P2 W P1 P2 1 3 1/3 1 0.75 0.25 CI1 RI 2 0 0 OK {0.75, 0.25, 0} C2 P2 P3 W P2 P3 1 1/5 5 1 0.167 0.833 CI2 RI 2 0 0 OK {0, 0.167, 0.833} C3 P1 P2 W P1 P2 1 2 1/2 1 0.667 0.333 CI3 RI 2 0 0 OK {0.667, 0.333, 0} Z-P矩阵 Z P C1 C2 C3 0.105 0.637 0.258 总排序权值 P1 P2 P3 0.75 0 0.667 0.25 0.167 0.333 0 0.833 0 0.251 0.218 0.531 CI RI CR 0.105CI1+0.637CI2+0.258CI3=0 0 0<0.1 第六章 微分方程模型 思考2 屋檐的水槽问题 房屋管理部门想在房顶的边檐安装一个檐槽,其目的是为了雨天出入方便。从屋脊到屋檐的房顶可看成是一个12米长,6米宽的矩形平面,房顶与水平方向的倾斜角度一般在 。 b a 现有一公司想承接这项业务,允诺:提供一种新型的檐槽,包括一个横截面为半圆形(半径为7.5cm)的水槽和一个竖直的排水管(直径为10cm),不论天气情况如何,这种檐槽都能排掉房顶的雨水。房管部门犹豫,考虑公司的承诺能否实现。请你建立数学模型,论证这个方案的可行性。 b a 1 问题的简化 水槽的容量能否足以排出雨水的问题,简化为水箱的流入流出问题。从房顶上流下的雨水量是流入量;顺垂直于房顶的排水管排出的是流出量。水槽能否在没有溢出的情况下将全部雨水排出,即就是要研究水槽中水的深度与时间的函数关系。 2 假设 (1)雨水垂直下落并且直接落在房顶上; (2)落在房顶上的雨水全部迅速流入水槽中; (3)直接落入水槽中的雨水可忽略不计; (4)落在房顶上的雨没有溅到外面去; (5)在排水系统中不存在一些预料不到的障碍,象落在房顶上的杂物、树叶等。 3 符号说明 有关因素 因素类型 符号 单位 降水速度 输入变量 r ms-1 时间 变量 t s 房顶的倾斜角 输入参数 弧度 房顶的长度 输入参数 d m 房顶的宽度 输入参数 b m 水槽的半径 输入参数 a m 水槽中水的高度 输出变量 h m 水槽中水的容量 变量 V m3 流入水槽的流速 变量 Q1 m3s-1 流出水槽的流速 变量 Q0 m3s-1 排水管的横截面积 参数 A m2 4 模型的建立 根据速度平衡原理,对于房顶排水系统水槽中水的容量的变化率=雨水的流入速度 - 排水管流出的速度。 分别是单位时间流入水槽和从水槽流出的雨水量的体积。 雨 表示单位时间里落在水平面上雨水的深度,房顶的面积 水流 b 实际受雨的水平面积,房顶上雨水的流速 流入水槽的速度应是在铅垂方向的分量 排水管的流出速度应与水槽中水的深度有关。 根据能量守恒原理 , , 水槽中水的体积为 , h 5模型的求解与分析 接下来请同学们自己完成。 古尸年代鉴定问题 在巴基斯坦一个洞穴里,发现了具有古代尼安德特人特征的人骨碎片,科学家把它带到实验室,作碳14年代测定,分析表明,与的比例仅仅是活组织内的6.24%,能否判断此人生活在多少年前? 第六章 其他模型 某大楼人员的疏散问题展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




数学建模习题指导.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/6912907.html