分享
分销 收藏 举报 申诉 / 5
播放页_导航下方通栏广告

类型三角形全等判定(ASA)教学设计.doc

  • 上传人:仙人****88
  • 文档编号:5770068
  • 上传时间:2024-11-19
  • 格式:DOC
  • 页数:5
  • 大小:53KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    三角形 全等 判定 ASA 教学 设计
    资源描述:
    11.2.3 三角形全等判定(ASA)教学设计 眉山市岷东初中:严明刚 一、教学内容 本节课主要内容是探索三角形全等的判定(ASA,AAS),及利用全等三角形的证明. 二、教材地位分析 三角形全等的判定是初中数学的一个重要内容。本课是学生已学了SSS与SAS的基础上进行的。学生已经有了一定的理论基础和认知模式。通过本课,学生能进一步提高合情推理的能力和感受转化的数学思想,为今后研究几何问题建立了一定的模式。 三、设计思想 本节课通过创设一个学生熟悉的问题情境,让学生感受数学源于生活,用于生活。通过画图,验证自己的猜想,合作交流得到“角边角”定理。再通过层层铺垫引出其推论。通过改编例题为开放题,训练学生的发散思维,这就是本课的创新之处。 在教学过程中,笔者注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生合作交流、团结互助的精神和主动探索、善于发现的科学精神。同时,在合作交流、探索的过程中,学会用类比的方法发现结论,采用启发、诱导的方法来指导学生“会学”,引导学生反思、小结数学的思想方法,知识的获取,指导学生“善学”,让学生看到自我的价值,增强学习的乐趣和信心。 四、教学目标 1.知识与技能 理解“角边角”、“角角边”判定三角形全等的方法. 2.过程与方法 经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定方法解决实际问题. 3.情感、态度与价值观 培养良好的几何推理意识,发展数学思维,感悟全等三角形的应用价值. 五、教学重点、难点、关键 1.重点:应用“角边角”、“角角边”判定三角形全等. 2.难点:学会综合法解决几何推理问题. 3.关键:把握综合分析法的思想,寻找问题的切入点. 六、教学准备 投影仪、直尺、圆规. 七、教学方法 采用“问题教学法”,在问题情境中,激发学生的求知欲. 八、教学过程 (一)、创设情境 一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来 同样大小的新教具?能恢复原来三角形的原貌吗? 【说明】:对于学生的回答,教师可及时鼓励,但不作评价,留下悬念,引人课题。 (二)、探究新知 先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B,把画出的△A′B′C′剪下,放到△ABC上,它们全等吗? 学生动手操作,感知问题的规律,画图步骤如下: 1.画A′B′=AB; 2.在A′B′的同旁画∠DA′B′=∠A, ∠EBA′=∠B,A′D,B′E交于点C′。 归纳:两角与它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”). 问题1:课本图11.2─8中,∠A′=∠A,∠B′=∠B,那么∠C=∠A′C′B′吗?为什么? 学生交流、总结如下: 根据三角形内角和定理,∠C′=180°-∠A′-∠B′,∠C=180°-∠A-∠B,由于∠A=∠A′,∠B=∠B′,∴∠C=∠C′. 问题2:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF(课本图11.2─9),△ABC与△DEF全等吗? 学生运用三角形内角和定理,以及“ASA”很快证出△ABC≌△EFD。 师生共同归纳规律:两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS). 让学生就上述问题交流自己的探索过程。 【设计意图】:改变以往“教师讲、学生听”的被动式学习方式。学生是数学学习的主人,充分发挥学生的主体作用,当学生思维受阻时,老师适度启发、引导、激励,可以使学生更大程度地投入到课堂中,同时也激发了学生的思维,大胆猜想,积极主动参与探索知识的发生过程,为下面的继续探索奠定了良好的学习氛围)。 (三)例题讲解 例:如图11.2-10,D在AB上,E在AC上,AB=AC,∠B=∠C. 问题:由已知,你能得到什么结论?为什么? 教师鼓励学生大胆发表自己的见解,对于有困难的要适时帮助。 O A C D B 【设计意图】把课本例题改编为开放题,锻炼学生的发散思维,这也是本课的创新之处。 例2. (1)已知:如下图,∠1=∠2,∠C=∠D。求证:AC=AD (2)已知:如下图,∠1=∠2,∠3=∠4。求证:AC=AD (四)学生练习 如图,AB、CD相交于点O,已知∠A=∠B添加条件( )(填一个即可) 就有 △AO≌ △BOD 说明:此题由课本练习改编。 (设计意图:练习的安排是根据从易到难,从简单到复杂的循序渐进的原则,使学生对刚学到的知识、方法能够熟练应用,从而把知识转化为技能,提高解决实际问题的能力) (五)、课堂小结 到目前为止,我们学习了哪些三角形全等的判定方法? 【设计意图】:引导学生进行总结和归纳,从而培养学生的分析能力、概括能力。 (六)、作业 1.课本P44习题12.2第11、12题
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:三角形全等判定(ASA)教学设计.doc
    链接地址:https://www.zixin.com.cn/doc/5770068.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork