内蒙古伊图里河高级中学高三数学复习-第1讲--集合与常用逻辑用语.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 内蒙古 伊图里河 高级中学 数学 复习 集合 常用 逻辑 用语
- 资源描述:
-
内蒙古伊图里河高级中学高三数学复习:第1讲 集合与常用逻辑用语 【主干知识整合】 1.集合 (1)元素的特征:确定性、互异性、无序性,元素与集合之间的关系是属于和不属于; (2)集合与集合之间的关系:集合与集合之间是包含关系和非包含关系,其中关于包含有包含和真包含,用符号⊆,表示.其中一个集合本身是其子集的子集,空集是任何非空集合的真子集; (3)集合的运算:A∩B={x|x∈A,且x∈B},A∪B={x|x∈A,或x∈B},∁UA={x|x∈U,且x∉A}. 2.四种命题及其关系 (1)四种命题; (2)四种命题之间的关系:四种命题是指对“若p,则q”形式的命题而言的,把这个命题作为原命题,则其逆命题是“若q,则p”,否命题是“若綈p,则綈q”,逆否命题是“若綈q,则綈p”,其中原命题和逆否命题、逆命题和否命题是等价的,而且命题之间的关系是相互的. 3.充要条件 (1)充要条件:若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件; (2)充要条件与集合:设命题p对应集合A,命题q对应集合B,则p⇒q等价于A⊆B,p⇔q等价于A=B. 4.逻辑联结词 (1)逻辑联结词“或”“且”“非”的含义; (2)带有逻辑联结词的命题真假:命题p∨q,只要p,q有一为真,即为真命题,换言之,只有p,q均为假命题时才为假;命题p∧q,只有p,q均为真命题时才为真,换言之,只要p,q有一为假,即为假命题;p和p为一真一假两个互为对立的命题; (3)“或”命题和“且”命题的否定:命题p∨q的否定是p∧q;命题p∧q的否定是p∨q. 5.量词 (1)全称量词与存在量词; (2)全称命题和特称命题; (3)含有一个量词的命题的否定:“∀x∈M,p(x)”的否定为“∃x0∈M,p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,p(x)”. 【要点热点探究】 例1 [2011·陕西卷] 设集合M={y|y=|cos2x-sin2x|,x∈R},N=x<,i为虚数单位,x∈R,则M∩N为( ) A.(0,1) B.(0,1] C.[0,1) D.[0,1] 【解析】 对于M,由二倍角公式得y=|cos2x-sin2x|=|cos2x|,故0≤y≤1.对于N,因为x-=x+i,由<,得<,所以-1<x<1,故M∩N=[0,1),故答案为C. 【点评】 本题需要注意两个问题,一是两个集合的含义,二是要注意集合N中的不等式是一个复数模的实数不等式,不要根据实数的绝对值求解.高考考查集合一般是以集合的形式与表示等式的解、函数的定义域、函数的值域等,在解题时要特别注意集合的含义. 【变式题】:若集合M={0,1,2},N={(x,y)|x-y≥0,x2+y2≤4,x,y∈M},则N中元素的个数为( ) A.9 B.6 C.4 D.2 【解析】 由题意知(0,0),(1,0),(1,1),(2,0)符合,选C. 【探究点二 四种命题和充要条件的判断】 例2 (1)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3 B.若a+b+c=3,则a2+b2+c2<3 C.若a+b+c≠3,则a2+b2+c2≥3 D.若a2+b2+c2≥3,则a+b+c=3 (2)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【解析】 (1)命题的否命题是原命题的条件与结论分别否定后组成的命题,所以选择A。 (2)由判定充要条件方法之一——定义法知,由“y=f(x)是奇函数”可以推出“y=|f(x)|的图象关于y轴对称”,反过来,逆推不成立,所以选B. 【点评】 一个命题的否命题、逆命题、逆否命题是根据原命题适当变更条件和结论后得到的形式上的命题,解这类试题时要注意对于一些关键词的否定,如本题中等于的否定是不等于,而不是单纯的大于、也不是单纯的小于;进行充要条件判断实际上就是判断两个命题的真假,这里要注意断定一个命题为真需要进行证明,断定一个命题为假只要举一个反例即可. 【探究点三 逻辑联结词、量词和命题的否定】 例3 (1)[2011·北京卷] 若p是真命题,q是假命题,则( ) A.p∧q是真命题 B.p∨q是假命题 C.p是真命题 D.q是真命题 (2)[2011·安徽卷] 命题“所有能被2整除的整数都是偶数”的否定是( ) A.所有不能被2整除的整数都是偶数 B.所有能被2整除的整数都不是偶数 C.存在一个不能被2整除的整数是偶数 D.存在一个能被2整除的整数不是偶数 【解析】 (1)p是真命题,则綈p是假命题;q是假命题,则綈q是真命题,故应选D. (2)本题是一个全称命题,其否定是特称命题,同时将命题的结论进行否定,答案为D. 【点评】 (1)“或”“且”联结两个命题,这两个命题的真假确定了“或”命题和“且”命题的真假,其中“或”命题是一真即真,“且”命题是一假即假,“非”是对一个命题的否定,命题与其“非”命题一真一假;(2)否定一个命题就是否定这个命题的结论,即推翻这个命题,这与写出一个命题的否命题是不同的.一个命题的否命题,是否定条件和结论后的形式上的命题,如本题中我们把命题改写为“已知n为任意整数,若n能被2整除,则n是偶数”,其否命题是“已知n为任意整数,若n不能被2整除,则n不是偶数”,显然这个命题是真命题,但这个命题的否定是假命题. 【变式题】:有四个关于不等式的命题:p1:∃x0∈R, +x0+1>0; p2:∃x0,y0∈R,+-4x0-2y0+6<0;p3:∀x,y∈R+,≤; p4:∀x,y∈R,x3+y3≥x2y+xy2.其中真命题是( ) A.p1,p4 B.p2,p4 C.p1, p3 D.p2,p3 【解析】 x2+x+1=2+>0,命题p1正确;x2+y2-4x-2y+6=(x-2)2+(y-1)2+1>0,命题p2不正确;≤=≤,命题p3正确;x3+y3-x2y-xy2=(x+y)(x-y)2,当x+y<0时,不等式不成立,故命题p4不正确.故正确选项为C. 【创新链接1 集合中的新定义问题】 以集合为背景的新定义问题,历来是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托,考查的是考生创造性解决问题的能力. 求解集合中的新定义问题,主要抓两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质. 例4 [2011·广东卷] 设S是整数集Z的非空子集,如果∀a,b∈S,有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是( ) A.T,V中至少有一个关于乘法是封闭的 B.T,V中至多有一个关于乘法是封闭的 C.T,V中有且只有一个关于乘法是封闭的 D.T,V中每一个关于乘法都是封闭的 【分析】 根据新定义,就是要判断“∀a,b∈T,有ab∈T”,“∀x,y∈V,有xy∈V”这两个全称命题的真假. 【解析】 A T全部是偶数,V全部是奇数,那么T,V对乘法是封闭的,但如果T是全部偶数和1,3,那么此时T,V都符合题目要求,但是在V里面,任意取的数是-1和-3,那么相乘等于3,而V里面没有3,所以V对乘法不封闭.排除B、C、D选项,所以“至少一个”是对的. 【点评】 集合的创新问题,通常需要弄清题目给出的新定义、新概念、新法则与教材上的知识间的联系,将新的定义、概念、法则转化为“常规数学”问题,然后求解. 【变式题】: (1)[2011·福建卷] 在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论: ①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4]; ④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是( ) A.1 B.2 C.3 D.4 (2)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是( ) A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b 【解析】 (1)因为2011=5×402+1,则2011∈[1],结论①正确;因为-3=5×(-1)+2,则-3∈[2],结论②不正确;因为所有的整数被5除的余数为0,1,2,3,4五类,则Z=[0]∪[1]∪[2]∪[3]∪[4],结论③正确;若整数a,b属于同一“类”[k],可设a=5n1+k,b=5n2+k(n1,n2∈Z),则a-b=5(n1-n2)∈[0];反之,若a-b∈[0],可设a=5n1+k1,b=5n2+k2(n1,n2∈Z),则a-b=5(n1-n2)+(k1-k2)∈[0]; ∴k1=k2,则整数a,b属于同一“类”,结论④正确,故选C. (2)选项B中,[a*(b*a)]*(a*b)=b*(a*b)=a,成立;选项C中,b*(b*b)=b,成立;选项D中,把(a*b)看做一个整体,记为c,则(a*b)*[b*(a*b)]=c*(b*c)=b,成立,故只有选项A中的结论不恒成立. 规律技巧提炼 1.解答集合有关问题,首先正确理解集合的意义,准确地化简集合是关键.其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和韦恩图加以解决. 2.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立、一真一假的. 3.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法. 4.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断. 5.特称命题的否定是全称命题、全称命题的否定是特称命题. 【教师备用例题】 选理由:例1是对本讲例2的一个补充,即判断充要条件定义外还可以根据等价转化的方法进行;例2是对“且”命题的否定,由于其位置不突出我们在正文中没有给出;例3为一个新定义试题,虽然是2010年的高考试题,但这个题和正文例题4及其变式可以形成对集合中新定义试题的一个题组训练,达到一个较好的效果. 例1 “α≠β”是“sinα≠sinβ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【解析】 B 方法1:由于α=2π+β时,α≠β,但此时sinα=sinβ,故条件是不充分的;由于sinα≠sinβ时,如果α=β,则sinα=sinβ,故由sinα≠sinβ⇒α≠β,故条件是必要的. 方法2:命题“若α≠β,则sinα≠sinβ”等价于命题“若sinα=sinβ,则α=β”,这个命题显然不正确,故条件是不充分的;由于命题“若sinα≠sinβ,则α≠β”等价于命题“若α=β,则sinα=sinβ”,这个命题是真命题,故条件是必要的. 例2 已知命题p:若x>0,y>0,则xy>0,则p的否命题是( ) A.若x>0,y>0,则xy≤0 B.若x≤0,y≤0,则xy≤0 C.若x,y至少有一个不大于0,则xy<0 D.若x,y至少有一个小于或等于0,则xy≤0 【解析】 D 否命题应在否定条件的同时否定结论,而原命题中的条件是“且”的关系,所以条件的否定形式是“x≤0或y≤0”. 例3 设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题: ①集合S={a+bi|a,b为整数,i为虚数单位}为封闭集; ②若S为封闭集,则一定有0∈S; ③封闭集一定是无限集; ④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集. 其中真命题是________(写出所有真命题的序号). 【答案】 ①② 【解析】 设x=a1+b1i,y=a2+b2i,a1,b1,a2,b2为整数,则x+y=(a1+a2)+(b1+b2)i,x-y=(a1-a2)+(b1-b2)i,xy=(a1a2-b1b2)+(a1b2+a2b1)i,由于a1,b1,a2,b2为整数,故a1±a2,b1±b2,a1a2-b1b2,a1b2+a2b1都是整数,所以x+y,x-y,xy∈S,故集合S={a+bi|a,b为整数,i为虚数单位}为封闭集,①是真命题;若S是封闭集,取x=y∈S,则根据封闭集的定义,x-y=x-x=0∈S,故命题②正确;集合S={0}显然是封闭集,故封闭集不一定是无限集,命题③不正确;集合S={0}⊆{0,1}=T⊆C,容易验证集合T不是封闭集,故命题④不是真命题. - 5 -展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




内蒙古伊图里河高级中学高三数学复习-第1讲--集合与常用逻辑用语.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/5744690.html