高中数学圆锥曲线知识点小结.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 圆锥曲线 知识点 小结
- 资源描述:
-
《圆锥曲线》知识点小结 一、椭圆: (1)椭圆的定义:平面内与两个定点的距离的和等于常数(大于)的点的轨迹。 其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。 注意:表示椭圆;表示线段;没有轨迹; (2)椭圆的标准方程、图象及几何性质: 中心在原点,焦点在轴上 中心在原点,焦点在轴上 标准方程 图 形 x O F1 F2 P y A2 A1 B1 B2 x O F1 F2 P y A2 B2 B1 A1 顶 点 对称轴 轴,轴;短轴为,长轴为 焦 点 焦 距 离心率 (离心率越大,椭圆越扁) 3.常用结论:(1)椭圆的两个焦点为,过的直线交椭圆于两点,则的周长= (2)设椭圆左、右两个焦点为,过且垂直于对称轴的直线交椭圆于两点,则的坐标分别是 4、求离心率的常用方法: 法一,分别求出a,c,再代入公式 法二、建立a,b,c满足的关系,消去b,再化为关于e的方程,最后解方程求e (求e时,要注意椭圆离心率取值范围是0﹤e﹤1,而双曲线离心率取值范围是e﹥1) 二、双曲线: (1)双曲线的定义:平面内与两个定点的距离的差的绝对值等于常数(小于)的点的轨迹。 其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。 注意:与()表示双曲线的一支。 表示两条射线;没有轨迹; (2)双曲线的标准方程、图象及几何性质: 中心在原点,焦点在轴上 中心在原点,焦点在轴上 标准方程 图 形 x O F1 F2 P y A2 A1 y x O F1 P B2 B1 F2 顶 点 对称轴 轴,轴;虚轴为,实轴为 焦 点 焦 距 离心率 (离心率越大,开口越大) 渐近线 (3)双曲线的渐近线: ①求双曲线的渐近线,可令其右边的1为0,即得,因式分解得到。 ②与双曲线共渐近线的双曲线系方程是; (4)等轴双曲线为,其离心率为 (4)常用结论:(1)双曲线的两个焦点为,过的直线交双曲线的同一支于两点,则的周长= (2)设双曲线左、右两个焦点为,过且垂直于对称轴的直线交双曲线于两点,则的坐标分别是 三、抛物线: (1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。 其中:定点为抛物线的焦点,定直线叫做准线。 (2)抛物线的标准方程、图象及几何性质: 标准方程 图 形 x O F P y O F P y x O F P y x O F P y x 顶 点 对称轴 轴 轴 焦 点 离心率 准 线 焦半径 四、弦长公式: 求弦长步骤:(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x的一元二次方程设,,由韦达定理求出,; (3)代入弦长公式计算。 法(二)若是联立两方程,消去x,得关于y的一元二次方程则相应的弦长公式是: 注意(2)求与弦长有关的三角形面积,往往先求弦长,再求这边上的高(点到直线的距离),但若三角形被过顶点的一条线段分成两个三角形,且线段的长度为定值,求面积一般用分割法 五、弦的中点坐标的求法 法(一):(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x的一元二次方程设,,由韦达定理求出;(3)设中点,由中点坐标公式得;再把代入直线方程求出。 法(二):用点差法,设,,中点,由点在曲线上,线段的中点坐标公式,过A、B两点斜率公式,列出5个方程,通过相减,代入等变形,求出。 四、基础应用 1.已知F1,F2为椭圆 (a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆离心率,则椭圆的方程是 2.已知椭圆的短半轴长为1,离心率0<e≤.则长轴长的取值范围为 . 3.过(3,0),离心率e=的椭圆标准方程为 . 4.已知定点A,B且|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值是 5.已知A,B为双曲线E的左、右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为 6.已知双曲线过点(4,),且渐近线方程为,则该双曲线的标准方程为 . 7.设P是双曲线上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点.若|PF1|=3,则|PF2|= 8. F是抛物线x2=2y的焦点,A,B是抛物线上的两点,|AF|+|BF|=6,则线段AB的中点到x轴的距离为 . 9.抛物线y2=x上一点P到焦点的距离是2,则点P的坐标为 10.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则点B到该抛物线准线的距离为 . 11. 已知点P(3,4)是椭圆 (a>b>0)上的一点,F1,F2为椭圆的两焦点,若PF1⊥PF2,试求: (1)椭圆的方程. (2)△PF1F2的面积. 4展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高中数学圆锥曲线知识点小结.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/5675726.html