分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型2019_2020学年新教材高中数学习题课一指数函数的性质与图像新人教B版必修第二册.doc

  • 上传人:二***
  • 文档编号:4491786
  • 上传时间:2024-09-25
  • 格式:DOC
  • 页数:4
  • 大小:2.36MB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019 _2020 学年 新教材 高中数学 习题 指数函数 性质 图像 新人 必修 第二
    资源描述:
    习题课(一) 指数函数的性质与图像 一、选择题 1.已知f(x)=a-x(a>0且a≠1),且f(-2)>f(-3),则a的取值范围是(  ) A.(0,+∞) B.(1,+∞) C.(-∞,1) D.(0,1) 解析:选D ∵-2>-3,f(-2)>f(-3), 又f(x)=a-x=x,∴-2>-3, ∴>1,∴0<a<1. 2.函数f(x)=在(-∞,+∞)上(  ) A.单调递减无最小值 B.单调递减有最小值 C.单调递增无最大值 D.单调递增有最大值 解析:选A u=2x+1为R上的增函数且u>0,∴y=在(0,+∞)上为减函数,即f(x)=在(-∞,+∞)上为减函数,无最小值. 3.已知函数f(x)=3x-x,则f(x)(  ) A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数 C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数 解析:选A 因为f(x)=3x-x,且定义域为R, 所以f(-x)=3-x--x=x-3x=- =-f(x),即函数f(x)是奇函数. 又y=3x在R上是增函数,y=x在R上是减函数,所以f(x)=3x-x在R上是增函数. 4.若函数f(x)=(1-2a)x在实数集R上是减函数,则实数a的取值范围是(  ) A.        B. C. D. 解析:选B 由已知,得0<1-2a<1,解得0<a<,即实数a的取值范围是. 5.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=2ax-1在[0,1]上的最大值是(  ) A.6 B.1 C.3 D. 解析:选C 函数y=ax在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=2ax-1=4x-1在[0,1]上是单调递增函数,当x=1时,ymax=3. 6.已知f(x)=3x-b(2≤x≤4,b为常数)的图像经过点(2,1),则f(x)的值域为(  ) A.[9,81] B.[3,9] C.[1,9] D.[1,+∞) 解析:选C 由f(x)过定点(2,1)可知b=2,因为f(x)=3x-2在[2,4]上是增函数,f(x)min=f(2)=1,f(x)max=f(4)=9,所以f(x)的值域为[1,9]. 二、填空题 7.若不等式3ax2-2ax>对一切实数x恒成立,则实数a的取值范围是________. 解析:不等式即为3ax2-2ax>3-1, 则有ax2-2ax>-1, 即ax2-2ax+1>0对一切实数x恒成立. 当a=0时,满足题意; 当a≠0时,要满足题意,则需a>0且Δ=(-2a)2-4a<0, 即a2-a<0,解得0<a<1. 综上,实数a的取值范围是[0,1). 答案:[0,1) 8.若函数f(x)=在区间(-∞,1]内有意义,则实数a的取值范围是________. 解析:依题意得1+a·3x≥0在区间(-∞,1]上恒成立,即a≥-在区间(-∞,1]上恒成立,由-在区间(-∞,1]上的最大值为-,得a≥-. 答案: 9.函数f(x)=+2,若有f(a)+f(a-2)>4,则a的取值范围是________. 解析:设F(x)=f(x)-2,则F(x)=,易知F(x)是奇函数,F(x)===1-在R上是增函数, 由f(a)+f(a-2)>4得F(a)+F(a-2)>0, 于是可得F(a)>F(2-a),即a>2-a,解得a>1. 答案:(1,+∞) 三、解答题 10.已知函数y=22x-1-3·2x+5. (1)如果y<13,求x的取值范围; (2)如果0≤x≤2,求y的取值范围. 解:由题意知y=(2x)2-3·2x+5. (1)由y<13,得(2x)2-6·2x-16<0, 所以(2x-8)(2x+2)<0, 因为2x+2>0,所以2x-8<0,解得x<3, 所以x的取值范围为(-∞,3). (2)因为0≤x≤2,所以1≤2x≤4, 而y=(2x-3)2+,于是当2x=3时,y取得最小值,且最小值为; 当2x=1时,y取得最大值,且最大值为. 所以y的取值范围为. 11.设函数f(x)=10-ax,a是不为零的常数. (1)若f(3)=,求使f(x)≥4的x的取值范围; (2)当x∈[-1,2]时,f(x)的最大值是16,求a的值. 解:(1)由f(3)=得a=3,不等式f(x)≥4可化为23x-10≥22,∴x≥4, 故x的取值范围是[4,+∞). (2)当a>0时,f(x)=2ax-10是增函数, 则22a-10=16,所以a=7; 当a<0时,f(x)=2ax-10是减函数,则2-a-10=16,所以a=-14. 综上,a=-14或a=7. 12.对于函数f(x)=a-(x∈R). (1)判断并证明函数的单调性; (2)是否存在实数a,使函数f(x)为奇函数?证明你的结论. 解:(1)函数f(x)为R上的增函数. 证明如下:函数f(x)的定义域为R.任取x1,x2∈R,且x1<x2, 有f(x1)-f(x2)=-=-=. 因为y=2x是R上的增函数,x1<x2, 所以2x1-2x2<0,又2x1+1>0,2x2+1>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)为R上的增函数. (2)因为x∈R,f(x)是奇函数,所以f(0)=0,即a=1.所以存在实数a=1,使函数f(x)为奇函数. 证明如下:当a=1时,f(x)=1-=. 对任意x∈R,f(-x)===-=-f(x),又f(x)的定义域为R,故f(x)为奇函数. - 4 -
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2019_2020学年新教材高中数学习题课一指数函数的性质与图像新人教B版必修第二册.doc
    链接地址:https://www.zixin.com.cn/doc/4491786.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork