抛物线与圆的综合知识讲解.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抛物线 综合 知识 讲解
- 资源描述:
-
拔高专题 抛物线与圆的综合 一、基本模型构建 常见模型 思考 圆与抛物线以及与坐标系相交,根据抛物线的解析式可求交点 坐标 ,根据交点可求三角形的 边长 ,由于圆的位置不同,三角形的形状也不同。再根据三角形的形状,再解决其它问题。 二、拔高精讲精练 探究点一:抛物线、圆和直线相切的问题 例1: (2015•崇左)如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点. (1)则点A,B,C的坐标分别是A (2,0) ,B (8,0) ,C (0,4) ; (2)设经过A,B两点的抛物线解析式为y=(x-5)2+k,它的顶点为E,求证:直线EA与⊙M相切; (3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由. (1)解:连接MC、MA,如图1所示:∵⊙M与y轴相切于点C,∴MC⊥y轴,∵M(5,4),∴MC=MA=5,OC=MD=4, ∴C(0,4),∵MD⊥AB,∴DA=DB,∠MDA=90°,∴AD==3,∴BD=3,∴OA=5-3=2,OB=5+3=8, ∴A(2,0),B(8,0); (2)证明:把点A(2,0)代入抛物线y=(x-5)2+k,得:k=-,∴E(5,-), ∴DE=,∴ME=MD+DE=4+=,EA2=32+()2=,∵MA2+EA2=52+=,ME2=, ∴MA2+EA2=ME2,∴∠MAE=90°,即EA⊥MA,∴EA与⊙M相切; (3)解:存在;点P坐标为(5,4),或(5,),或(5,4+);理由如下: 由勾股定理得:BC===4,分三种情况:①当PB=PC时,点P在BC的垂直平分线上,点P与M重合, ∴P(5,4); ②当BP=BC=4时,如图2所示:∵PD===,∴P(5,);③当PC=BC=4时,连接MC,如图3所示:则∠PMC=90°,根据勾股定理得:PM===,∴PD=4+, ∴P(5,4+);综上所述:存在点P,且点P在x轴的上方,使△PBC是等腰三角形, 点P的坐标为(5,4),或(5,),或(5,4+). 【变式训练】(2015•柳州)如图,已知抛物线y=-(x2-7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C. (1)用配方法将抛物线的解析式化为顶点式:y=a(x-h)2+k(a≠0),并指出顶点M的坐标; (2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标; (3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线. (1)解:∵y=-(x2-7x+6)=-(x2-7x)-3=-(x-)2+,∴抛物线的解析式化为顶点式为:y=-(x-)2+,顶点M的坐标是(,); (2)解:∵y=-(x2-7x+6),∴当y=0时,-(x2-7x+6)=0,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=-3,∴C(0,-3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==3.设直线BC的解析式为y=kx+b,∵B(6,0),C(0,-3),∴,解得,∴直线BC的解析式为:y=x-3,令x=,得y=×-3=-,∴R点坐标为(,-); (3)证明:设点P坐标为(x,-x2+x-3).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即(x-)2+(-x2+x-3)2=()2,化简整理得,x4-14x3+65x2-112x+60=0,(x-1)(x-2)(x-5)(x-6)=0,解得x1=1(与A重合,舍去),x2=2,x3=5(在对称轴的右侧,舍去),x4=6(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴PM2=(2-)2+(2-)2=,PN2=(2-)2+22==, MN2=()2=,∴PM2+PN2=MN2,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线. 【教师总结】本题是二次函数综合题目,考查了坐标与图形性质、垂径定理、二次函数解析式的求法、勾股定理、勾股定理的逆定理、切线的判定、等腰三角形的性质等知识;综合性强. 探究点二:抛物线、圆和三角形的最值问题 例2:(2015•茂名)如图,在平面直角坐标系中,⊙A与x轴相交于C(-2,0),D(-8,0)两点,与y轴相切于点B(0,4). (1)求经过B,C,D三点的抛物线的函数表达式; (2)设抛物线的顶点为E,证明:直线CE与⊙A相切; (3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标。 解:(1)设抛物线的解析式为:y=ax2+bx+c,把B(0,4),C(-2,0),D(-8,0)代入得:, 解得.∴经过B,C,D三点的抛物线的函数表达式为:y=x2+x+4; (2)∵y=x2+x+4=(x+5)2-,∴E(-5,-),设直线CE的函数解析式为y=mx+n,直线CE与y轴交于点G,则,解得:,∴y=x+,在y=x+中,令x=0,y=,∴G(0,), 如图1,连接AB,AC,AG,则BG=OB-OG=4-=,CG===,∴BG=CG,AB=AC, 在△ABG与△ACG中,,∴△ABG≌△ACG,∴∠ACG=∠ABG,∵⊙A与y轴相切于点B(0,4),∴∠ABG=90°,∴∠ACG=∠ABG=90°∵点C在⊙A上,∴直线CE与⊙A相切; (3)存在点F,使△BDF面积最大, 如图2连接BD,BF,DF,设F(t,t2+t+4),过F作FN∥y轴交BD于点N,设直线BD的解析式为y=kx+d,则,解得.∴直线BD的解析式为y=x+4, ∴点N的坐标为(t,t+4),∴FN=t+4-(t2+t+4)=-t2-2t,∴S△DBF=S△DNF+S△BNF=OD•FN=×8×(-t2-2t)=-t2-8t=-(t+4)2+16,∴当t=-4时,S△BDF最大,最大值是16,当t=-4时,t2+t+4=-2,∴F(-4,-2). 【变式训练】如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C的圆与y轴的另一个交点为D.已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4). (1)求此抛物线的表达式与点D的坐标; (2)若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值。 解:(1)∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,解得, ∴抛物线的解析式为:y=x2-x-4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC、BC,由勾股定理得:AC=,BC=.∵AC2+BC2=AB2=100,∴∠ACB=90°,∴AB为圆的直径.由垂径定理可知,点C、D关于直径AB对称,∴D(0,4); (2)解法一:设直线BD的解析式为y=kx+b,∵B(8,0),D(0,4),∴,解得, ∴直线BD解析式为:y=-x+4.设M(x,x2-x-4),如答图2-1,过点M作ME∥y轴,交BD于点E,则E(x,-x+4).∴ME=(-x+4)-(x2-x-4)=-x2+x+8.∴S△BDM=S△MED+S△MEB=ME(xE-xD)+ME(xB-xE)=ME(xB-xD)=4ME,∴S△BDM=4(-x2+x+8)=-x2+4x+32=-(x-2)2+36.∴当x=2时,△BDM的面积有最大值为36; 解法二:如答图2-2,过M作MN⊥y轴于点N.设M(m,m2-m-4),∵S△OBD=OB•OD==16,S梯形OBMN=(MN+OB)•ON=(m+8)[-(m2-m-4)]=-m(m2-m-4)-4(m2-m-4), S△MND=MN•DN=m[4-(m2-m-4)]=2m-m(m2-m-4),∴S△BDM=S△OBD+S梯形OBMN-S△MND=16-m(m2-m-4)-4(m2-m-4)-2m+m(m2-m-4)=16-4(m2-m-4)-2m=-m2+4m+32=-(m-2)2+36;∴当m=2时,△BDM的面积有最大值为36. 【教师总结】本题考查了待定系数法求解析式,在解答此类问题时要注意构造出辅助线,利用圆的有关性质、勾股定理、三角形面积的求法等综合求解. 第 8 页 共 8 页展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




抛物线与圆的综合知识讲解.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/4130872.html