高中数学(北师大版)必修四教案:2.7-易错辨析:平面向量应用.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同步备课 同步 备课 高中数学 北师大 必修 教案 2.7 辨析 平面 向量 应用
- 资源描述:
-
平面对量应用易错辩析 运用向量学问解题常可收到化繁为简、化难为易的奇特功效,随着新教材的逐步实施,它已成为高考数学的新宠。但同学在初学这部分内容时,往往会消灭这样或那样的错误,现列举几种常见错误,以期起到防患于未然的作用。 一、忽视共线向量致误 例1、已知同一平面上的向量、、两两所成的角相等,并且,,,求向量的长度。 错解:易知、、皆为非零向量,设、、所成的角均为,则,即,所以,,同理,,由=3,故。 剖析:本例误以为、、皆为非共线向量,而当向量、、共线且同向时,所成的角也相等均为,符合题意。 正解:(1)当向量、、共线且同向时,所成的角均为,所以 ; (2)当向量、、不共线时,同错解. 综上所述, 向量的长度为6或。 二、忽视两向量夹角的意义致误 例2、正的边长为1,且,,,求的值。 错解:由于正的边长为1,所以,且, 所以,,同理可得,, 由=6,故。 剖析:本题误以为与的夹角为。事实上,两向量的夹角应为平面上同一起点表示向量的两条有向线段之间的夹角,范围是,因此,与的夹角应为。 正解:作,与的夹角即与的夹角为,所以,,同理可得,, 由=0,故。 三、忽视充要条件致误 例3、已知,,设与的夹角为,要使为锐角,求的取值范围。 错解:由于为锐角,所以,由知,只须,即,即。 剖析:本题误以为两非零向量与的夹角为锐角的充要条件是,事实上,两向量的夹角,当时,有,对于非零向量与仍有,因此,是两非零向量与的夹角为锐角的必要不充分的条件。即有如下结论:两非零向量与的夹角为锐角的充要条件是且不平行于。 正解:由为锐角,得且,由,而、恒大于0,所以,,即;若平行则即,但若平行则或,与为锐角相冲突,所以; 综上,且。 四、忽视向量的特性致误 例4、已知、都是非零向量,且向量与垂直,向量与垂直,求向量与的夹角。 错解:由题意得,即 ,两式相减得,即,所以,(不合题意舍去)或,由知与同向,故向量与的夹角为。 剖析:本题误用实数的性质,即实数、若满足则必有或,但对于向量、若满足则不肯定有或,由于由知与有关,当时,恒成立,此时、均可以不为。 正解:由前知代入得,所以,,故。展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高中数学(北师大版)必修四教案:2.7-易错辨析:平面向量应用.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3812552.html