分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型【2021高考复习参考】高三数学(理)配套黄金练习:4.3.docx

  • 上传人:w****g
  • 文档编号:3798071
  • 上传时间:2024-07-18
  • 格式:DOCX
  • 页数:4
  • 大小:48.30KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021高考复习参考 2021 高考 复习 参考 数学 配套 黄金 练习 4.3
    资源描述:
    第四章 4.3 第3课时 高考数学(理)黄金配套练习 一、选择题 1.计算sin43°cos13°+sin47°cos103°的结果等于(  ) A.           B. C. D. 答案 A 解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=. 2.已知sinα=,cosβ=,且α是其次象限角,β是第四象限角,那么sin(α-β)等于(  ) A. B. C.- D.- 答案 A 解析 由于α是其次象限角,且sinα=,所以cosα=-=-.又由于β是第四象限角,cosβ=,所以sinβ=-=-.sin(α-β)=sinαcosβ-cosαsinβ=×-(-)×(-)==. 3.设α∈(0,),若sinα=,则cos(α+)等于(  ) A. B. C.- D.- 答案 B 解析 由于α∈(0,),sinα=,所以cosα==. 所以cos(α+)=(cosαcos-sinαsin)=(cosα-sinα)=cosα-sinα=-= 4.化简cos(α-β)cosβ-sin(α-β)sinβ的结果为(  ) A.sin(2α+β) B.cos(α-2β) C.cosα D.cosβ 答案 C 解析 等式即cos(α-β+β)=cosα 5.设a=sin14°+cos14°,b=sin16°+cos16°,c=,则a、b、c的大小关系是(  ) A.a<b<c B.a<c<b C.b<a<c D.b<c<a 答案 B 解析 a=sin(45°+14°)=sin59° b=sin(45°+16°)=sin61° c==sin60°,∴b>c>a. 6.在△ABC中,C=120°,tanA+tanB=,则cosAcosB=(  ) A. B. C. D.- 答案 B 解析 tanA+tanB=+ ===== ∴cosAcosB= 7.已知tan(α+β)=,tan=,那么tan等于(  ) A. B. C. D. 答案 C 解析 由于α++β-=α+β,所以α+=(α+β)-,所以tan=tan ==. 8.若3sinα+cosα=0,则的值为(  ) A. B. C. D.-2 答案 A 解析 3sinα=-cosα⇒tanα=-. ====. 二、填空题 9.cos84°cos24°-cos114°cos6°的值为________. 答案  解析 cos84°cos24°-cos114°cos6°=cos84°cos24°+cos66°sin84°=cos84°cos24°+sin24°sin84°=cos(84°-24°)=cos60°=. 10.已知α为第三象限的角,cos 2α=-,则tan (+2α)=________. 答案 - 解析 由cos 2α=2cos2α-1=-,且α为第三象限角,得cosα=-,sinα=-,则tan α=2,tan2α=-,tan(+2α)==-. 11. 如图,角α的顶点在原点O,始边在x轴的正半轴,终边经过点P(-3,-4).角β的顶点在原点O,始边在x轴的正半轴,终边OQ落在其次象限,且tanβ=-2,则cos∠POQ的值为________. 答案 - 解析  tanβ=tan(π-θ1)=-tanθ1=-2,∴tanθ1=2,tanθ2=. tan∠POQ= =-2=. 又由sin2∠POQ+cos2∠POQ=1,得cos∠POQ=-. 12.化简:+=________. 答案 -4cos2α 解析 原式=+= -=-= -=-4cos2α. 13.不查表,计算-=________.(用数字作答) 答案 4 解析 原式= = = ==4. 三、解答题 14.求(tan10°-)·的值. 解析 (tan10°-)·=(tan10°-tan60°)·=(-)·=·=·=-=-2. 15.已知sin(α+)=,且<α<.求cosα的值. 解析 sin(α+)=且<α< ∴<α+<π ∴cos(α+)=-=- ∴cosα=cos[(α+)-] =cos(α+)cos+sin(α+)sin =-×+×=. 16.已知tan2θ=(<θ<π),求的值. 解 ∵tan2θ==, ∴tanθ=-3或tanθ=, 又θ∈(,π),∴tanθ=-3, ∴== ==-. 拓展练习·自助餐 1.化简的结果是(  ) A.tan9° B.-tan9° C.tan15° D.-tan15° 答案 B 解析  = = = =-tan9° 2.函数f(x)=sin2x-cos2x的最小正周期是(  ) A. B.π C.2π D.4π 答案 B 解析 f(x)=sin(2x-),∴T==π. 3.若cosα+2sinα=-,则tanα=(  ) A. B.2 C.- D.-2 答案 B 解析 考查三角函数的运算与转化力气,已知正弦和余弦的一个等量关系,可以结合正弦余弦平方和等于1,联立方程组解得正弦余弦的值,再利用tanα=求得,但运算量较大,作为选择题不适合.也可以利用三角变换处理,原等式即sin(α+φ)=-,其中tanφ=,0<φ<,∴sin(α+φ)=-1, ∴α+φ=2kπ+,k∈Z,∴tanα=cotφ=2. 也可观看得到答案. 4.已知sin(x+)sin(-x)=,x∈(,π),求sin4x的值. 分析 由题设留意到+x+-x=,因此需交换后再用公式求解. 解析 ∵sin(x+)sin(-x)=sin(+x)cos[-(-x)] =sin(x+)cos(+x)=sin(2x+)=cos2x=,∴cos2x=.∵x∈(,π),∴2x∈(π,2π),∴sin2x=-.∴sin4x=2sin2xcos2x=-. 探究 (1)一般说来,在题目中有单角、倍角,应将倍角化为单角,同时应留意2α,2α-,α-等之间关系的运用. (2)在求cos2x的过程中,本题也可接受如下方法: sin(x+)sin(-x)=(sin x+cosx)(cosx-cosx-sinx)=(cos2x-sin2x)=cos2x=,从而得cos2x=. 老师备选题 1.已知在△ABC中,cosBcosC=1-sinB·sinC,那么△ABC是(  ) A.锐角三角形 B.等腰三角形 C.直角三角形 D.钝角三角形 答案 B 解析 由条件知cosBcosC+sinBsinC=1,cos(B-C)=1,B-C=0,∴B=C. 2.在△ABC中,“cosA=2sinBsinC”是“△ABC为钝角三角形”的(  ) A.必要不充分条件 B.充要条件 C.充分不必要条件 D.即不充分也不必要条件 答案 C 解析 在△ABC中,A=π-(B+C) ∴cosA=-cos(B+C) 又∵cosA=2sinBsinC 即-cosBcosC+sinBsinC=2sinBsinC ∴cos(B-C)=0,∴B-C=,∴B为钝角. 3.设α∈(0,),β∈(,),且α、β满足5sinα+5cosα=8,sinβ+cosβ=2,求cos(α+β)的值. 解析 ∵5sinα+5cosα=8,∴sin(α+)=. ∵α∈(0,),∴(α+)∈(,), ∴cos(α+)=. 又∵sinβ+cosβ=2,∴sin(β+)=, ∵β∈(,),∴(β+)∈(,), ∴cos(β+)=-, ∴sin[(α+)+(β+)]=sin(α+)cos(β+)+cos(α+)sin (β+)=-, ∴cos(α+β)=-.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:【2021高考复习参考】高三数学(理)配套黄金练习:4.3.docx
    链接地址:https://www.zixin.com.cn/doc/3798071.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork