分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型2022届高三数学一轮总复习基础练习:第二章-函数、导数及其应用2-4-.docx

  • 上传人:丰****
  • 文档编号:3711409
  • 上传时间:2024-07-15
  • 格式:DOCX
  • 页数:4
  • 大小:18.86KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    名师一号 名师 一号 2022 届高三 数学 一轮 复习 基础 练习 第二 函数 导数 及其 应用
    资源描述:
    第四节 函数的奇偶性与周期性 时间:45分钟 分值:100分 一、选择题 1.(2021·深圳调研)下列函数中,为奇函数的是(  ) A.y=2x+ B.y=x,x∈{0,1} C.y=x·sinx D.y= 解析 A中函数是偶函数;B中函数是非奇非偶函数;C中函数是偶函数;D中函数是奇函数. 答案 D 2.函数f(x)=lnx2(  ) A.是偶函数且在(-∞,0)上单调递增 B.是偶函数且在(0,+∞)上单调递增 C.是奇函数且在(0,+∞)上单调递减 D.是奇函数且在(-∞,0)上单调递减 解析 函数f(x)的定义域为x≠0,当x>0时,f(x)=lnx2=2lnx,∴f(x)在(0,+∞)上单调递增,又f(-x)=ln(-x)2=lnx2=f(x),∴f(x)为偶函数. 答案 B 3.若函数f(x)=是奇函数,则a的值为(  ) A.0 B.1 C.2 D.4 解析 由f(-1)=-f(1),得=, ∴(-1+a)2=(1+a)2解得a=0. 答案 A 4.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)等于(  ) A.-2 B.2 C.-98 D.98 解析 ∵f(x+4)=f(x),∴f(x)是周期为4的函数. ∴f(7)=f(2×4-1)=f(-1). 又∵f(x)在R上是奇函数, ∴f(-x)=-f(x).∴f(-1)=-f(1).而当x∈(0,2)时,f(x)=2x2,∴f(1)=2×12=2.∴f(7)=f(-1)=-f(1)=-2.故选A. 答案 A 5.函数f(x)满足f(x)·f(x+2)=13,若f(1)=2,则f(99)等于(  ) A.13 B.2 C. D. 解析 ∵f(x)·f(x+2)=13,∴f(x+2)=, 则f(x)=,故f(x)·f(x+2)=·=13, 即f(x)f(x-2)=13,∴f(x+2)=f(x-2), 故函数f(x)的周期为4, ∴f(99)=f(3)==. 答案 D 6.设f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则x·f(x)<0的解集是(  ) A.{x|-3<x<0,或x>3} B.{x|x<-3,或0<x<3} C.{x|x<-3,或x>3} D.{x|-3<x<0,或0<x<3} 解析 由x·f(x)<0,得或 而f(-3)=0,f(3)=0, 即或 所以x·f(x)<0的解集是{x|-3<x<0,或0<x<3}. 答案 D 二、填空题 7.函数f(x)在R上为奇函数,且x>0时,f(x)=+1,则当x<0时,f(x)=________. 解析 ∵f(x)为奇函数,x>0时,f(x)=+1, ∴当x<0时,-x>0, f(x)=-f(-x)=-(+1), 即x<0时,f(x)=-(+1)=--1. 答案 --1 8.已知函数y=f(x)+x3为偶函数,且f(10)=10,若函数g(x)=f(x)+4,则g(-10)=________. 解析 设h(x)=f(x)+x3,由题意可得h(x)为偶函数,所以h(-10)=h(10),即f(-10)+(-10)3=f(10)+103, 故f(-10)=f(10)+2×103=2 010, 所以g(-10)=f(-10)+4=2 014. 答案 2 014 9.已知函数f(x)为定义在R上的奇函数,当x≥0时,都有ff(x)=2 014,且当x∈时,f(x)=log2(2x+1),则f(-2 015)+f(2 013)=________. 解析 由于函数f(x)为奇函数且f(0)有定义,故f(0)=0,且f(-2 015)=-f(2 015). 当x≥0时,由ff(x)=2 014,可得f=,故f(x+3)==f(x). 可得f(2 015)=f(3×671+2)=f(2), f(2 013)=f(3×671)=f(0). 由已知f(0)=0,而f(2)=f=, 又f=log2=log22=1, 所以f(2)==2 014,即f(2 015)=2 014, 故f(-2 015)=-2 014. 综上,f(-2 015)+f(2 013) =-2 014+0=-2 014. 答案 -2 014 三、解答题 10.推断下列函数的奇偶性. (1)f(x)=x3-. (2)f(x)=+. (3)f(x)= 解 (1)原函数的定义域为{x|x≠0}, 并且对于定义域内的任意一个x都有 f(-x)=(-x)3-=-=-f(x), 从而函数f(x)为奇函数. (2)f(x)的定义域为{-1,1},关于原点对称. 又f(-1)=f(1)=0,f(-1)=-f(1)=0, 所以f(x)既是奇函数又是偶函数. (3)f(x)的定义域为R,关于原点对称, 当x>0时,f(-x)=-(-x)2-2=-(x2+2)=-f(x); 当x<0时,f(-x)=(-x)2+2=-(-x2-2)=-f(x); 当x=0时,f(0)=0,也满足f(-x)=-f(x). 故该函数为奇函数. 11.(2021·曲阜师大附中质检)定义域为[-1,1]的奇函数f(x)满足f(x)=f(x-2),且当x∈(0,1)时,f(x)=2x+. (1)求f(x)在[-1,1]上的解析式; (2)求函数f(x)的值域. 解 (1)当x=0时,f(0)=-f(0),故f(0)=0. 当x∈(-1,0)时,-x∈(0,1), f(x)=-f(-x)=-(-2x+)=2x-. 若x=-1时,f(-1)=-f(1). 又f(1)=f(1-2)=f(-1),故f(1)=-f(1),得f(1)=0,从而f(-1)=-f(1)=0. 综上,f(x)= (2)∵x∈(0,1)时,f(x)=2x+, ∴f′(x)=2+>0,故f(x)在(0,1)上单调递增. ∴f(x)∈(0,3). ∵f(x)是定义域为[-1,1]上的奇函数,且f(0)=f(1)=f(-1)=0, ∴当x∈[-1,1]时,f(x)∈(-3,3). ∴f(x)的值域为(-3,3). 1.设定义在R上的奇函数y=f(x),满足对任意t∈R,都有f(t)=f(1-t),且x∈时,f(x)=-x2,则f(3)+f的值等于(  ) A.- B.- C.- D.- 解析 由f(t)=f(1-t), 得f(1+t)=f(-t)=-f(t). 所以f(2+t)=-f(1+t)=f(t), 所以f(x)的周期为2. 又f(1)=f(1-1)=f(0)=0, 所以f(3)+f =f(1)+f=0-2 =-.故选C. 答案 C 2.若函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是单调增函数.假照实数t满足f(lnt)+f<2f(1)时,那么t的取值范围是________. 解析 由于函数f(x)是偶函数, 所以f=f(-lnt)=f(lnt)=f(|lnt|). 则有f(lnt)+f<2f(1)⇒2f(lnt)<2f(1) ⇒f(|lnt|)<f(1)⇒|lnt|<1⇒<t<e. 答案  3.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)-g(x)=x,则f(1),g(0),g(-1)之间的大小关系是________. 解析 在f(x)-g(x)=x中,用-x替换x,得f(-x)-g(-x)=2x,由于f(x),g(x)分别是定义在R上的奇函数和偶函数,所以f(-x)=-f(x),g(-x)=g(x),因此得-f(x)-g(x)=2x.于是解得f(x)=,g(x)=-,于是f(1)=-,g(0)=-1,g(-1)=-,故f(1)>g(0)>g(-1). 答案 f(1)>g(0)>g(-1) 4.定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数). (1)推断k为何值时f(x)为奇函数,并证明; (2)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(mx2-2mx+3)>3对任意x∈R恒成立,求实数m的取值范围. 解 (1)若f(x)在R上为奇函数,则f(0)=0, 令x=y=0,则f(0+0)=f(0)+f(0)+k,∴k=0. 证明:令a=b=0,由f(a+b)=f(a)+f(b), 得f(0+0)=f(0)+f(0),即f(0)=0. 令a=x,b=-x,则f(x-x)=f(x)+f(-x), 又f(0)=0,则有0=f(x)+f(-x), 即f(-x)=-f(x)对任意x∈R成立,∴f(x)是奇函数. (2)∵f(4)=f(2)+f(2)-1=5,∴f(2)=3. ∴f(mx2-2mx+3)>3=f(2)对任意x∈R恒成立. 又f(x)是R上的增函数, ∴mx2-2mx+3>2对任意x∈R恒成立, 即mx2-2mx+1>0对任意x∈R恒成立, 当m=0时,明显成立; 当m≠0时,由得0<m<1. ∴实数m的取值范围是[0,1).
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2022届高三数学一轮总复习基础练习:第二章-函数、导数及其应用2-4-.docx
    链接地址:https://www.zixin.com.cn/doc/3711409.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork