分享
分销 收藏 举报 申诉 / 9
播放页_导航下方通栏广告

类型全维状态观测器的设计.doc

  • 上传人:丰****
  • 文档编号:3559908
  • 上传时间:2024-07-09
  • 格式:DOC
  • 页数:9
  • 大小:80KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    状态 观测器 设计
    资源描述:
    实 验 报 告 课程 线性系统理论基础 实验日期 2016年 6月 6 日 专业班级 姓名 学号 同组人 实验名称全维状态观测器的设计 评分 批阅教师签字 一、实验目的 1. 学习用状态观测器获取系统状态估计值的方法,了解全维状态观测器的极点对状态的估计误差的影响; 2. 掌握全维状态观测器的设计方法; 3. 掌握带有状态观测器的状态反馈系统设计方法。 二、实验内容 开环系统,其中 a) 用状态反馈配置系统的闭环极点:; b) 设计全维状态观测器,观测器的极点为:; c) 研究观测器极点位置对估计状态逼近被估计值的影响; d) 求系统的传递函数(带观测器及不带观测器时); 绘制系统的输出阶跃响应曲线。 三、实验环境 MATLAB6.5 四、实验原理(或程序框图)及步骤 利用状态反馈可以使闭环系统的极点配置在所希望的位置上,其条件是必须对全部状态变量都能进行测量,但在实际系统中,并不是所有状态变量都能测量的,这就给状态反馈的实现造成了困难。因此要设法利用已知的信息(输出量y和输入量x),通过一个模型重新构造系统状态以对状态变量进行估计。该模型就称为状态观测器。若状态观测器的阶次与系统的阶次是相同的,这样的状态观测器就称为全维状态观测器或全阶观测器。 设系统完全可观,则可构造如图4-1所示的状态观测器 图4-1 全维状态观测器 为求出状态观测器的反馈ke增益,与极点配置类似,也可有两种方法: 方法一:构造变换矩阵Q,使系统变成标准能观型,然后根据特征方程求出ke ; 方法二:是可采用Ackermann公式: ,其中为可观性矩阵。 利用对偶原理,可使设计问题大为简化。首先构造对偶系统 然后可由变换法或Ackermann公式求出极点配置的反馈k增益,这也可由MATLAB的place和acker函数得到;最后求出状态观测器的反馈增益。 五、程序源代码、实验数据、结果分析 (a)源程序: A=[0 1 0;0 0 1;-6 -11 6]; B=[0;0;1]; C=[1 0 0];D=0; P1=[-2+2*sqrt(3)*i;-2-2*sqrt(3)*i;-5]; K1=place(A,B,P1) sysnew=ss(A-B*K1,B,C,D) 运行结果: K1 = 74.0000 25.0000 15.0000 a = x1 x2 x3 x1 0 1 0 x2 0 0 1 x3 -80 -36 -9 b = u1 x1 0 x2 0 x3 1 c = x1 x2 x3 y1 1 0 d = u1 y1 0 (b)源程序: A=[0 1 0;0 0 1;-6 -11 6]; B=[0;0;1]; C=[1 0 0];D=0; P2=[-5+2*sqrt(3)*i;-5-2*sqrt(3)*i;-10]; K2=acker(A',C',P2);L=K2' Anew=A-L*C 运行结果: L = 26 282 1770 Anew = -26 1 0 -282 0 1 -1776 -11 6 (c)研究观测器极点位置对估计状态逼近被估计值的影响: 观测器极点距离虚轴越近,估计状态逼近被估计值得速度越快。 (d)不带观测器: 源程序: A=[0 1 0;0 0 1;-6 -11 6]; B=[0;0;1]; C=[1 0 0];D=0; P1=[-2+2*sqrt(3)*i;-2-2*sqrt(3)*i;-5]; K1=place(A,B,P1) sysnew=ss(A-B*K1,B,C,D); [num,den]=ss2tf(A-B*K1,B,C,D); Gb=tf(num,den) step(Gb) grid on; title('不带观测器的系统的阶跃响应曲线'); 运行结果: K1 = 74.0000 25.0000 15.0000 Transfer function: 7.105e-015 s^2 + 1.208e-013 s + 1 -------------------------------------------- s^3 + 9 s^2 + 36 s + 80 带观测器: 源程序: A=[0 1 0;0 0 1;-6 -11 6]; B=[0;0;1]; C=[1 0 0];D=0; P1=[-2+2*sqrt(3)*i;-2-2*sqrt(3)*i;-5]; K1=place(A,B,P1); sysnew=ss(A-B*K1,B,C,D); P2=[-5+2*sqrt(3)*i;-5-2*sqrt(3)*i;-10]; K2=acker(A',C',P2);L=K2'; An=[A -B*K1;L*C A-B*K1-L*C] Bn=[B;B] Cn=[C 0 0 0] Dn=0; [num,den]=ss2tf(An,Bn,Cn,Dn); Go=tf(num,den) step(Go) grid on; title('带观测器的系统的阶跃响应曲线'); 运行结果: An = 1.0e+003 * 0 0.0010 0 0 0 0 0 0 0.0010 0 0 0 -0.0060 -0.0110 0.0060 -0.0740 -0.0250 -0.0150 0.0260 0 0 -0.0260 0.0010 0 0.2820 0 0 -0.2820 0 0.0010 1.7700 0 0 -1.8500 -0.0360 -0.0090 Bn = 0 0 1 0 0 1 Cn = 1 0 0 0 0 0 Transfer function: -1.137e-013 s^4 + s^3 + 20 s^2 + 137 s + 370 ------------------------------------------------------------------------------- s^6 + 29 s^5 + 353 s^4 + 2403 s^3 + 9862 s^2 + 2.428e004 s + 2.96e004 结果分析: σ%=10.8% tp=1.15s ts=1.63s 原系统方框图 原系统阶跃响应 加观测器的方框图: Scope1: Scope2: Scope3: (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:全维状态观测器的设计.doc
    链接地址:https://www.zixin.com.cn/doc/3559908.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork