电力电子技术课程设计-BUCK开关电源闭环控制的仿真研究-30V10V.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力 电子技术 课程设计 BUCK 开关电源 闭环控制 仿真 研究 30 V10V
- 资源描述:
-
CHANGZHOU INSTITUTE OF TECHNOLOGY 课 程 设 计 说 明 书 课程设计名称: 电力电子 题目:BUCK开关电源闭环控制的仿真研究- V/ V 2016年6月 电力电子课程设计任务书 二级学院:电气与光电工程学院 班级: 13电二 组号: 8# 专业:电气工程及其自动化 指导教师: 职称 讲师 课题名称 BUCK开关电源闭环控制的仿真研究-30V/10V 课 题 内 容 及 指 标 要 求 课题内容: 1、根据设计要求计算滤波电感和滤波电容的参数值,完成开关电路的设计 2、根据设计步骤和公式,设计双极点-双零点补偿网络,完成闭环系统的设计 3、采用MATLAB中simulink中simpowersystems模型库搭建开环闭环降压式变换器的仿真模型 4、撰写课程设计说明书(封面,目录,正文) 指标要求: 1、输入直流电压(VIN):30V,输出电压(VO):10V,输出电压纹波峰-峰值 Vpp≤50mV 2、负载电阻:R=2Ω,电感电流脉动:输出电流的10%,开关频率(fs)=100kHz 3、BUCK主电路二极管的通态压降VD=0.5V,电感中的电阻压降VL=0.1qV,开关管导通压降VON=0.5V,滤波电容C与电解电容RC的乘积为75μΩ*F 4、采用压控开关S2实现80%的额定负载的突加、突卸,负载突加突卸的脉冲信 号幅值为1,周期为0.012S,占空比为2%,相位延迟0.006S 进程安排 第1天 阅读课程设计指导书,熟悉设计要求和设计方法 第2天 根据设计原理计算相关主要元件参数以及完成BUCK开关电源系统的设计 第3天 熟悉MATLAB仿真软件的使用,构建系统仿真模型 第4天 仿真调试,记录要求测量波形 第5天 撰写课程设计说明书 起止日期 2 日 目录 一、Buck电路工作原理 4 二、Buck开关电源的应用 5 三、课程目的及设计要求 6 3.1 电力电子设计目的 6 3.2 电力电子设计要求 6 四、课程设计方案 7 4.1 Buck闭环系统框图 7 4.2 主电路设计以及参数运算 7 4.3 开环Buck电路仿真 9 五、闭环系统的设计 10 5.1 闭环系统结构图 10 5.2 Buck变换器原始回路传递函数的计算 11 5.3 补偿器的传递函数设计及仿真 12 5.4 闭环系统电路仿真 14 六、心得体会 16 七、参考文献 16 八、附录 17 18 一、Buck电路工作原理 降压式变换电路(Buck电路)详解 Buck电路基本结构如图1 图1 开关导通时等效电路 开关关断时等效电路如图2 图2 等效的电路模型及基本规律 (1)从电路可以看出,电感L和电容C组成低通滤波器,此滤 波器设计 的原则是使的直流分量可以通过,而抑制的谐波分量通过;电容上输出电压就是的直流分量再附加微小纹波uripple(t) 。 (2) 电路工作频率很高,一个开关周期内电容充 放电引起的纹波uripple(t)很小,相对于电容输出的直流电压有: (3) 电容上电压宏观上可以看作恒定的 电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。 一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。 这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。 (4)开关S置于1位时,电感电流增加,电感储能;而当开关S 置于2位时,电感电流减小,电感释能。假定电流增加量大于 电流减小量,则一个开关周期内电感上磁链增量为: 此增量将产生一个平均感应电势: 此电势将减小电感电流的上升速度并同时降低电感电流的下降速度,最终将导致一个周期内电感电流平均增量为零;一个开关周期内电感上磁链增量小于零的状况也一样。这种在稳态状况下一个周期内电感电流平均增量(磁链平均增量)为零的现象称为:电感伏秒平衡。这也是电力电子电路稳态运行时的又一个普遍规律。 二、Buck开关电源的应用 现代电子系统设计都需要一个恒定输出的供电电源,无论输入电压还是负载电流发生变化,只要这些变化在稳压源的运行范围内,稳压源都要保证电路有恒定的连续的电压输出。在便携式系统中,输入电压常常来自电池或直流电压源,而系统所用的芯片越来越多,芯片的功耗也越来越大,系统各芯片对电源的电压、电流和性能要求也多种多样。开关电源以PWM技术为主,通过改变脉冲的占空比调节输出电压,如何根据电压和电流情况并考虑性能、功耗和体积等因素在众多的电源芯片中选型并优化,是电子系统设计中面临的重要问题。借助于TI最新的WEBENCH电源设计工具可以在TI众多的电源芯片中挑选出适合项目的芯片并进行外围电路设计和优化。 三、课程目的及设计要求 3.1 电力电子设计目的 此次电力电子课程设计中,有四个目的: 1. 了解开、闭环降压拓扑的基本结构及工作原理 2. 掌握BUCK开关电源电路中各元器件选择和主要参数的计算 3. 运用Matlab仿真软件对所设计的开、闭环降压电路进行仿真 4. 掌握降压电路电压控制双极点、双零点补偿环节的设计与仿真技术 3.2 电力电子设计要求 本次电力电子课程设计要求中,有七个要求: 1. 输入直流电压(Vin):30V 2. 输出电压(Vo):10V 3. 输出电压纹波峰-峰值:Vpp≤55mV 4. 负载电阻:R=2Ω 5. 电感电流脉动:输出电流的10%,开关频率(fs)=100kHz 6. BUCK主电路二极管的通态压降VD=0.5V,电感中的电阻压降VL=0.1V,开关管导通压降VON=0.5V,滤波电容C与电解电容RC的乘积为75μΩ*F 7. 采用压控开关S2实现80%的额定负载的突加、突卸,负载突加突卸的脉冲信号幅值为1,周期为0.012S,占空比为2%,相位延迟0.006S 四、课程设计方案 4.1 Buck闭环系统框图 图3 直流变换:将固定的直流电压转换为可变的直流电压。 控制对象:实际的物理系统,是希望被控制的实际系统。 采样网络:确定了采样位置的点网系统,用来监测一个或多个特定地点的参数。 补偿控制器:提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。 锯齿波PWM补偿控制器:通过高频开关调制,使变换器输出波形的频谱间距拉大,然后利用滤波器滤出不需要的高频分量。 4.2 主电路设计以及参数运算 电容等效电阻Rc和滤波电感L的计算 上图中Rc为电容的等效电阻(ESR),输出纹波电压只与电容的容量以及ESR有关,电解电容生产厂商很少给出ESR,但C与Rc的乘积趋于常数,约为50-80μ*ΩF。本例中取为75μ*ΩF。计算出Rc和C的值。 (1-1) (1-2) (1-3) 滤波电感L的计算 开关管闭合与导通状态的基尔霍夫电压方程可以计算。 S开通:() (1-4) (1-5) (1-6) 结合(1-4),(1-5)以及(1-6)可以得出: S关断: (1-6) (1-6) 最终得到 4.3 开环Buck电路仿真 仿真电路如图4所示 图4 仿真如图5,图6(电流,电压稳定后的放大图形)所示 图5 图6 仿真结果分析:仿真时采用ode23tb算法,开始仿真时时间设为0s,停止仿真时间设为0.04s,相对误差设置为1e-03,控制脉冲占空比为33.3%,得出输出电压为: 五、闭环系统的设计 5.1 闭环系统结构图 图7 整个Buck电路包括为补偿器,为PWM控制器,为开环传递函数和为反馈网络。采样电压与参考电压比较产生的偏差通过补偿器校正后来调节PWm控制器的波形的占空比,当占空比发生变化时,输出电压做成相应调整来消除偏差。如图8所示 图8 Gc(s):补偿控制器 Gm(s):锯齿波PWM控制器 Gvd(s):直流变换和控制对象 H(s):采样网络 5.2 Buck变换器原始回路传递函数的计算 采用小信号模型分析方法可得Buck变换器原始回路增益函数为: 其中为锯齿波PWm环节传递函数,近似成比例环节,为锯齿波幅值的倒数。为采样网络传递函数,,Rx,Ry为输出端反馈电压的分压电阻,为开环传递函数。 将,,,,,,带入传递函数表达式,得到: 所用matlab程序:num=[0.000225,3] den=[1.03*10^-7,6.9*10^-5,1] G0 =tf(num,den); bode(G0); margin(G0); 图9 用matlab绘制伯德图如图9,得到相角裕度33.6度。 由于相角裕度过低,因此需要添加有源超前滞后补偿网络校正。 5.3 补偿器的传递函数设计及仿真 补偿器的传递函数为: 有源超前-滞后补偿网络有两个零点、三个极点。 零点为:, 极点为:为原点,, 频率与之间的增益可近似为: 在频率与之间的增益则可近似为: 考虑达到抑制输出开关纹路波的目的,增益交接频率取: 开环传递函数的极点频率为: 将两个零点的频率设计为开环传递函数两个相似极点频率的, 则 将补偿网络两个极点设为以减小输出的高频开关纹波。 先将取值,根据公式可推出: 计算过程通过matlab变成完成。根据闭环传递函数,绘制伯德图,得到相角裕度。 加入补偿器之后伯德图如图10所示 图10 可以看出补偿后的相角裕度达到了154°,满足设计要求。 5.4 闭环系统电路仿真 闭环系统电路如图11所示: 图11 仿真波形如图12所示: 图12 图12 补偿后的数据分析:对闭环系统进行仿真(不含干扰负载),使参数符合控制要求),并记录波形。经过调试,设置传输延迟(Transport Delay)的时间延迟(Time Delay)为0.0002, 积分(Integrator)的饱和度上限(Upper saturation limit)为1.109,下限为1.105,绝对误差(Absolute tolerance)为0.000001,PWM的载波为100kHz,幅值为10KV的锯齿波。 系统在突加、突卸80%额定负载时的输出电压和负载电流的波形。其中采用压控开关S2实现负载的突加、突卸,负载突加突卸的脉冲信号幅值为1,周期为0.012S,占空比为20%,相位延迟0.006S。 六、心得体会 经过一个星期的拼搏和努力,终于完成了本次电力电子课程设计。在此次课设中,我们对BUCK变换器进行了详细的介绍,包括电路分析及原理解释、主电路参数设计、闭环参数的抑制干扰和BUCK电路的闭环仿真。考虑到实际应用和软件修改的方便,设计中补偿电路采用的是PID控制策略。在PID控制中,比例项用于减小系统的超调量,增加系统稳定性。另外,为了提高系统的稳定性和抗干扰能力,选用具有三个极点、双零点补偿的有源超前-滞后补偿网络。增设的两个零点补偿由于Buck变换器的极点造成的相位滞后,其中一个极点可以抵消变换器的ESR零点,另一个极点设置在高频段,可以抑制高频噪声。 这次课程设计是对于我们电力电子与自动控制课程的检测,在理论中的基础上把它运动到实际生活中。查阅资料,与同组同学交流的过程也是一种学习。也熟练熟悉并运用MATLAb仿真软件的使用,通过它来检测系统的稳定性和抗干扰能力,也让我真正做到了学以致用。 最后,感谢老师在这次课程设计中对我们的指导和纠正。 七、参考文献 1、《电力电子技术的MATLAB实践》黄忠霖,国防工业出版社,1992; 2、《电力电子系统建模及控制》徐德洪,机械工业出版社,1993; 3、《开关变换器的建模与控制》张卫平,中国电力出版社,1996; 4、《电力电子技术[M]》丁道宏.北京:航空工业出版社,1992; 5、《电力电子技术应用教程》蒋渭忠.电子工业出版社;2007; 八、附录 Matlab程序如下: clc; clear; Vg=30;L=137.09*10^(-6);C=750*10^(-6);fs=100*10^3;R=2;Vm=3;H=0.3;R c=0.1; G0=tf([C*Rc*Vg*H/Vm,Vg*H/Vm],[L*C,L/R,1]); figure(1); fp1=1/(2*pi*sqrt(L*C)); margin(G0); fg=(1/5)*fs; fz1=(1/2)*fp1; z2=(1/2)*fp1; fp2=fs; fp3=fs; [marg_G0,phase_G0]=bode(G0,fg*2*pi); marg_G=1/marg_G0; AV1=fz2/fg*marg_G AV2=fp2/fg*marg_G R2=10*10^3; R3=R2/AV2 C1=1/(2*pi*fz1*R2) C3=1/(2*pi*fp2*R3) C2=1/(2*pi*R2*(fp3-fz1)) R1=1/(2*pi*fz1*C3) num=conv([C1*R2,1],[(R1+R3)*C3,1]); den1=conv([(C1+C2)*R1,0],[R3*C3,1]); den=conv(den1,[R2*C1*C2/(C1+C2),1]); Gc=tf(num,den) figure(2); bode(Gc); G=series(Gc,G0); figure(3); margin(G) 1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究 2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器 7. 单片机控制的二级倒立摆系统的研究 8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究 11. 基于单片机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO〈,2〉激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制 32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的数控改造 61. 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计 68. 基于单片机船舶电力推进电机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研究及实现 73. 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究 77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究 79. 基于单片机的模糊控制器在工业电阻炉上的应用研究 80. 基于双单片机冲床数控系统的研究与开发 81. 基于Cygnal单片机的μC/OS-Ⅱ的研究 82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与实现 84. 变频调速液压电梯单片机控制器的研究 85. 基于单片机γ-免疫计数器自动换样功能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用 92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计 95. 基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机的温度测控系统在温室大棚中的设计与实现 103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADμC841单片机的防爆软起动综合控制器的研究 105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的空调器故障诊断系统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及基上隅角瓦斯积聚处理中的应用研究 110. 基于单片机的锅炉智能控制器的设计与研究 111. 超精密机床床身隔振的单片机主动控制 112. PIC单片机在空调中的应用 113. 单片机控制力矩加载控制系统的研究 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功! 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功! 单片机论文,毕业设计,毕业论文,单片机设计,硕士论文,研究生论文,单片机研究论文,单片机设计论文,优秀毕业论文,毕业论文设计,毕业过关论文,毕业设计,毕业设计说明,毕业论文,单片机论文,基于单片机论文,毕业论文终稿,毕业论文初稿,本文档支持完整下载,支持任意编辑!本文档全网独一无二,放心使用,下载这篇文档,定会成功!展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




电力电子技术课程设计-BUCK开关电源闭环控制的仿真研究-30V10V.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3044376.html