初二数学下册难题.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 下册 难题
- 资源描述:
-
1. 已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周. (1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长; (2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中, ①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值. ②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式. 答案 (1)证明:①∵四边形ABCD是矩形, ∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE, ∵EF垂直平分AC,垂足为O,∴OA=OC, ∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形, 又∵EF⊥AC,∴四边形AFCE为菱形, ②设菱形的边长AF=CF=xcm,则BF=(8-x)cm, 在Rt△ABF中,AB=4cm,由勾股定理得42+(8-x)2=x2,解得x=5, ∴AF=5cm. (2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形; 同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形. 因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形, ∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA, ∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒, ∴PC=5t,QA=12-4t, ∴5t=12-4t,解得t=4/3, ∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4/3秒. ②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上.分三种情况: i)当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12; ii)当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12; iii)当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12. 综上所述,a与b满足的数量关系式是a+b=12(ab≠0). \ 2. 某数学兴趣小组开展了一次课外活动,如图1,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q. (1)求证:DP=DQ; (2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明; (3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积. 分别以▱ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF. (1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的关系(只写结论,不需证明); (2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由. 答案 解:(1)GF⊥EF,GF=EF。 (2)GF⊥EF,GF=EF成立。理由如下: ∵四边形ABCD是平行四边形,∴AB=CD,∠DAB+∠ADC=180°。 ∵△ABE,△CDG,△ADF都是等腰直角三角形, ∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45° ∴∠BAE+∠FDA+∠EAF+∠ADF+∠FDC=180°。∴∠EAF+∠CDF=45°。 ∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF。 ∵在△EAF和△GDF中,,∴△EAF≌△GDF(SAS)。 ∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA。 ∴∠GFE=90°。∴GF⊥EF。 试题分析:(1)根据等腰直角三角形的性质以及平行四边形的性质得出∠FDG=∠EAF,进而得出△EAF≌△GDF即可得出答案: ∵四边形ABCD是平行四边形,∴AB=CD,∠DAB+∠ADC=180°。 ∵△ABE,△CDG,△ADF都是等腰直角三角形, ∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°。 ∴∠GDF=∠GDC+∠CDA+∠ADF=90°+∠CDA, ∠EAF=360°﹣∠BAE﹣∠DAF﹣∠BAD=270°﹣(180°﹣∠CDA)=90°+∠CDA。 ∴∠FDG=∠EAF。 ∵在△EAF和△GDF中,,∴△EAF≌△GDF(SAS)。 ∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA。 ∴∠GFE=90°。∴GF⊥EF。 (2)根据等腰直角三角形的性质以及平行四边形的性质得出∠FDG=∠EAF,进而得出△EAF≌△GDF即可得出答案。 在平行四边形ABCD中,∠BAD的平分线交BC于点E,交直线DC的延长线于点F。 1. 在图1中是说明:CE=CF。 2.若∠ABC=90° ,G是EF的中点(如图2),直接写出∠BDG的度数。 3.若∠ABC=90°,FG∥CE,FG=CE,分别连接DB,DG(如图3),求∠BDG的度数。 因为是平行四边形,所以∠F=∠BAE,∠DAF=∠AEB 又因为AF是角平分线 所以∠BAE=∠DAF 所以∠F=∠AEB 又因为∠CEF=∠AEB 所以∠F=∠CEF 所以CE=CF (2)因为AF是角平分线 ∠ABC=90° 平行四边形 所以BE=AB 又因AB=CD 所以BE=CD 连接CG,BG 因为EFG是等腰直角三角形 所以CG=GE 又因∠GCD=∠GEB=135° CD=BE 所以△BEG≌△DCG 所以BG=CD 又因∠CGD+∠EGD=90° ∠CGD=∠EGB 所以∠EGB+∠EGD=90° 所以∠BGD=90° 又因BG=GD 所以△BGD是等腰直角三角形 所以∠BDG=45° 3)延长AB、FG交于H,连接HD. 易证四边形AHFD为平行四边形 ∵∠ABC=120°,AF平分∠BAD ∴∠DAF=30°,∠ADC=120°,∠DFA=30° ∴△DAF为等腰三角形 ∴AD=DF ∴平行四边形AHFD为菱形 ∴△ADH,△DHF为全等的等边三角形 ∴DH=DF∠BHD=∠GFD=60° ∵FG=CE,CE=CF,CF=BH ∴BH=GF ∴△BHD 与△GFD全等 ∴∠BDH=∠GDF ∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




初二数学下册难题.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2467339.html