分享
分销 收藏 举报 申诉 / 55
播放页_导航下方通栏广告

类型初中数学平行四边形提高题与常考题与培优题(含解析).doc

  • 上传人:精****
  • 文档编号:2332289
  • 上传时间:2024-05-28
  • 格式:DOC
  • 页数:55
  • 大小:837KB
  • 下载积分:16 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初中 数学 平行四边形 提高 考题 培优题 解析
    资源描述:
    数学平行四边形提高题与常考题和培优题(含解析)    一.选择题(共12小题) 1.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是(  ) A.EF=CF B.EF=DE C.CF<BD D.EF>DE 2.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(  ) A.7 B.8 C.9 D.10 3.如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是(  ) A.5 B.7 C.8 D.10 4.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为(  ) A.4 B.8 C.2 D.4 5.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为(  ) A.11 B.16 C.19 D.22 6.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于(  ) A.2 B.3 C.4 D.6 7.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(  ) A.3cm B.4cm C.5cm D.8cm 8.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为(  ) A. B.4 C.2 D. 9.关于▱ABCD的叙述,正确的是(  ) A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形 C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形 10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为(  ) A.8 B.10 C.12 D.14 11.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为(  ) A.66° B.104° C.114° D.124° 12.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(  ) A.(0,0) B.(1,) C.(,) D.(,)   二.填空题(共12小题) 13.如图,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°,平行四边形ABCD的对角线AC、BD交于点O,过点O作OE⊥AD,则OE=  . 14.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于  cm. 15.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是  . 16.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=  . 17.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=  . 18.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为  . 19.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE中,DE的最小值是  . 20.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=  . 21.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是  . 22.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=  . 23.如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=  . 24.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为  .   三.解答题(共16小题) 25.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE. 26.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F. (1)求证:AE=AF; (2)求证:BE=(AB+AC). 27.已知:如图,矩形ABCD的对角线AC、BD相交于点O,CE∥DB,交AB的延长线于点E.求证:AC=EC. 28.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长. 29.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 30.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG. (1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG; (2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论. 31.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E. (1)求证:BE=CD; (2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积. 32.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E. (1)求证:四边形BCED′是菱形; (2)若点P是直线l上的一个动点,请计算PD′+PB的最小值. 33.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE. 求证:AF∥CE. 34.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F. (1)求证:AB=CF; (2)连接DE,若AD=2AB,求证:DE⊥AF. 35.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC. (1)求证:OE=OF; (2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长. 36.如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH. 37.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF. (1)试说明AC=EF; (2)求证:四边形ADFE是平行四边形. 38.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG. (1)请判断四边形EBGD的形状,并说明理由; (2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值. 39.如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形: (1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH是平行四边形; (2)如图3,在边长为1的小正方形组成的5×5网格中,点A,C,B都在格点上,在格点上画出点D,使点C与BC,CD,DA的中点F,G,H组成正方形CFGH; (3)在(2)条件下求出正方形CFGH的边长. 40.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形. (1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点. 求证:中点四边形EFGH是平行四边形; (2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想; (3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)   数学平行四边形提高题与常考题和培优题(含解析)  参考答案与试题解析   一.选择题(共12小题) 1.(2016•厦门)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是(  ) A.EF=CF B.EF=DE C.CF<BD D.EF>DE 【分析】首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE. 【解答】解:∵DE是△ABC的中位线, ∴E为AC中点, ∴AE=EC, ∵CF∥BD, ∴∠ADE=∠F, 在△ADE和△CFE中, ∵, ∴△ADE≌△CFE(AAS), ∴DE=FE. 故选B. 【点评】本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.   2.(2016•陕西)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(  ) A.7 B.8 C.9 D.10 【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题. 【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6, ∴AC===10, ∵DE是△ABC的中位线, ∴DF∥BM,DE=BC=3, ∴∠EFC=∠FCM, ∵∠FCE=∠FCM, ∴∠EFC=∠ECF, ∴EC=EF=AC=5, ∴DF=DE+EF=3+5=8. 故选B. 【点评】本题考查三角形中位线定理、等腰三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用三角形中位线定理,掌握等腰三角形的判定和性质,属于中考常考题型.   3.(2016•来宾)如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是(  ) A.5 B.7 C.8 D.10 【分析】由中位线的性质可知DE=,DF=,DE∥BF,DF∥BE,可知四边形BEDF为平行四边形,从而可得周长. 【解答】解:∵AB=4,BC=6,DE、DF是△ABC的中位线, ∴DE==2,DF==3,DE∥BF,DF∥BE, ∴四边形BEDF为平行四边形, ∴四边形BEDF的周长为:2×2+3×2=10, 故选D. 【点评】本题主要考查了三角形中位线的性质,利用中位线的性质证得四边形BEDF为平行四边形是解答此题的关键   4.(2016•葫芦岛)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为(  ) A.4 B.8 C.2 D.4 【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题. 【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=4, ∴AB=2DF=8, ∵AD=DB,AE=EC, ∴DE∥BC, ∴∠ADE=∠ABF=30°, ∴AF=AB=4, ∴BF===4. 故选D. 【点评】本题考查三角形中位线性质、含30度角的直角三角形性质、直角三角形斜边中线性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.   5.(2017•河北一模)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为(  ) A.11 B.16 C.19 D.22 【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可. 【解答】解:∵四边形ABCD为矩形, ∴B′C=BC=AD,∠B′=∠B=∠D=90° ∵∠B′EC=∠DEA, 在△AED和△CEB′中, , ∴△AED≌△CEB′(AAS); ∴EA=EC, ∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC, =AD+DE+EC+EA+EB′+B′C, =AD+DC+AB′+B′C, =3+8+8+3, =22, 故选D. 【点评】本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.   6.(2016•泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于(  ) A.2 B.3 C.4 D.6 【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果. 【解答】解:∵四边形ABCD是平行四边形, ∴AB∥CD,AD=BC=8,CD=AB=6, ∴∠F=∠DCF, ∵CF平分∠BCD, ∴∠FCB=∠DCF, ∴∠F=∠FCB, ∴BF=BC=8, 同理:DE=CD=6, ∴AF=BF﹣AB=2,AE=AD﹣DE=2, ∴AE+AF=4; 故选:C. 【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.   7.(2016•绵阳)如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(  ) A.3cm B.4cm C.5cm D.8cm 【分析】由▱ABCD的周长为26cm,对角线AC、BD相交于点O,若△AOD的周长比△AOB的周长多3cm,可得AB+AD=13cm,AD﹣AB=3cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案. 【解答】解:∵▱ABCD的周长为26cm, ∴AB+AD=13cm,OB=OD, ∵△AOD的周长比△AOB的周长多3cm, ∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm, ∴AB=5cm,AD=8cm. ∴BC=AD=8cm. ∵AC⊥AB,E是BC中点, ∴AE=BC=4cm; 故选:B. 【点评】此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.   8.(2016•济南)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为(  ) A. B.4 C.2 D. 【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可. 【解答】解:∵∠ABC的平分线交CD于点F, ∴∠ABE=∠CBE, ∵四边形ABCD是平行四边形, ∴DC∥AB, ∴∠CBE=∠CFB=∠ABE=∠E, ∴CF=BC=AD=8,AE=AB=12, ∵AD=8, ∴DE=4, ∵DC∥AB, ∴, ∴, ∴EB=6, ∵CF=CB,CG⊥BF, ∴BG=BF=2, 在Rt△BCG中,BC=8,BG=2, 根据勾股定理得,CG===2, 故选:C. 【点评】此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.   9.(2016•河北)关于▱ABCD的叙述,正确的是(  ) A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形 C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形 【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论. 【解答】解:∵▱ABCD中,AB⊥BC, ∴四边形ABCD是矩形,不一定是菱形,选项A错误; ∵▱ABCD中,AC⊥BD, ∴四边形ABCD是菱形,不一定是正方形,选项B错误; ∵▱ABCD中,AC=BD, ∴四边形ABCD是矩形,选项C正确; ∵▱ABCD中,AB=AD, ∴四边形ABCD是菱形,不一定是正方形,选项D错误; 故选:C. 【点评】本题考查了平行四边形的性质、菱形的判定方法、矩形的判定方法、正方形的判定方法;熟练掌握矩形、菱形、正方形的判定方法是解决问题的关键.   10.(2016•丹东)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为(  ) A.8 B.10 C.12 D.14 【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长. 【解答】解:∵四边形ABCD是平行四边形, ∴AD∥BC,DC=AB=6,AD=BC, ∴∠AFB=∠FBC, ∵BF平分∠ABC, ∴∠ABF=∠FBC, 则∠ABF=∠AFB, ∴AF=AB=6, 同理可证:DE=DC=6, ∵EF=AF+DE﹣AD=2, 即6+6﹣AD=2, 解得:AD=10; 故选:B. 【点评】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.   11.(2016•河北)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为(  ) A.66° B.104° C.114° D.124° 【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可. 【解答】解:∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠ACD=∠BAC, 由折叠的性质得:∠BAC=∠B′AC, ∴∠BAC=∠ACD=∠B′AC=∠1=22°, ∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°; 故选:C. 【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.   12.(2016•咸宁)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(  ) A.(0,0) B.(1,) C.(,) D.(,) 【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题. 【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K. ∵四边形OABC是菱形, ∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称, ∴PC+PD=PA+PD=DA, ∴此时PC+PD最短, 在RT△AOG中,AG===, ∴AC=2, ∵OA•BK=•AC•OB, ∴BK=4,AK==3, ∴点B坐标(8,4), ∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1, 由解得, ∴点P坐标(,). 故选D. 【点评】本题考查菱形的性质、轴对称﹣最短问题、坐标与图象的性质等知识,解题的关键是正确找到点P位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.   二.填空题(共12小题) 13.(2017•新城区校级模拟)如图,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°,平行四边形ABCD的对角线AC、BD交于点O,过点O作OE⊥AD,则OE=  . 【分析】作CF⊥AD于F,由平行四边形的性质得出∠ADC=∠ABC=60°,CD=AB=4,OA=OC,求出∠DCF=30°,由直角三角形的性质得出DF=CD=2,求出CF=DF=2,证出OE是△ACF的中位线,由三角形中位线定理得出OE的长即可. 【解答】解:作CF⊥AD于F,如图所示: ∵四边形ABCD是平行四边形, ∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC, ∴∠DCF=30°, ∴DF=CD=2, ∴CF=DF=2, ∵CF⊥AD,OE⊥AD,CF∥OE, ∵OA=OC, ∴OE是△ACF的中位线, ∴OE=CF=; 故答案为:. 【点评】本题考查了平行四边形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识;熟练掌握平行四边形的性质,证出OE是三角形的中位线是解决问题的关键.   14.(2016•张家界)如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 14 cm. 【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题. 【解答】解:∵BD=AD,BE=EC, ∴DE=AC=4cm,DE∥AC, ∵CF=FA,CE=BE, ∴EF=AB=3cm,EF∥AB, ∴四边形ADEF是平行四边形, ∴四边形ADEF的周长=2(DE+EF)=14cm. 故答案为14. 【点评】本题考查三角形中位线定理、平行四边形的判定和性质等知识,解题的关键是出现中点想到三角形中位线定理,记住三角形中位线平行于第三边且等于第三边的一半,属于中考常考题型.   15.(2017秋•海宁市校级月考)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是  . 【分析】根据直角三角形性质求出CE长,利用勾股定理即可求出AB的长. 【解答】解:∵四边形ABCD是平行四边形, ∴AB∥DC,AB=CD, ∵AE∥BD, ∴四边形ABDE是平行四边形, ∴AB=DE=CD, 即D为CE中点, ∵EF⊥BC, ∴∠EFC=90°, ∵AB∥CD, ∴∠DCF=∠ABC=60°, ∴∠CEF=30°, ∵EF=3, ∴CE==2, ∴AB=, 故答案为:. 【点评】本题考查了平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强.   16.(2017•河北区模拟)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2= 4:9 . 【分析】设大正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案. 【解答】解:设大正方形的边长为x,根据图形可得: ∵=, ∴=, ∴=, ∴S1=S正方形ABCD, ∴S1=x2, ∵=, ∴=, ∴S2=S正方形ABCD, ∴S2=x2, ∴S1:S2=x2:x2=4:9. 故答案是:4:9. 【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.   17.(2016•随州)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= 3 . 【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可. 【解答】解:连接CM, ∵M、N分别是AB、AC的中点, ∴NM=CB,MN∥BC,又CD=BD, ∴MN=CD,又MN∥BC, ∴四边形DCMN是平行四边形, ∴DN=CM, ∵∠ACB=90°,M是AB的中点, ∴CM=AB=3, ∴DN=3, 故答案为:3. 【点评】本题考查的是三角形的中位线定理、直角三角形的性质、平行四边形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.   18.(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为 36° . 【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小. 【解答】解:∵四边形ABCD是平行四边形, ∴∠D=∠B=52°, 由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°, ∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°, ∴∠FED′=108°﹣72°=36°; 故答案为:36°. 【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.   19.(2016•东营)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE中,DE的最小值是 4 . 【分析】首先证明BC∥AE,当DE⊥BC时,DE最短,只要证明四边形ABDE是矩形即可解决问题. 【解答】解:∵四边形ADCE是平行四边形, ∴BC∥AE, ∴当DE⊥BC时,DE最短, 此时∵∠B=90°, ∴AB⊥BC, ∴DE∥AB, ∴四边形ABDE是平行四边形, ∵∠B=90°, ∴四边形ABDE是矩形, ∴DE=AB=4, ∴DE的最小值为4. 故答案为4. 【点评】本题考查平行四边形的性质、垂线段最短等知识,解题的关键是找到DE的位置,学会利用垂线段最短解决问题,属于中考常考题型.   20.(2016•常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD= 55° . 【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可. 【解答】解:∵四边形ABCD是平行四边形, ∴∠BAD=∠C, 由折叠的性质得:∠D1AE=∠C, ∴∠D1AE=∠BAD, ∴∠D1AD=∠BAE=55°; 故答案为:55°. 【点评】本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.   21.(2016•常州)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是 1 . 【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判断ab的最大值即可. 【解答】解:延长EP交BC于点F, ∵∠APB=90°,∠APE=∠BPC=60°, ∴∠EPC=150°, ∴∠CPF=180°﹣150°=30°, ∴PF平分∠BPC, 又∵PB=PC, ∴PF⊥BC, 设Rt△ABP中,AP=a,BP=b,则 CF=CP=b,a2+b2=22=4, ∵△APE和△ABD都是等边三角形, ∴AE=AP,AD=AB,∠EAP=∠DAB=60°, ∴∠EAD=∠PAB, ∴△EAD≌△PAB(SAS), ∴ED=PB=CP, 同理可得:△APB≌△DCB(SAS), ∴EP=AP=CD, ∴四边形CDEP是平行四边形, ∴四边形CDEP的面积=EP×CF=a×b=ab, 又∵(a﹣b)2=a2﹣2ab+b2≥0, ∴2ab≤a2+b2=4, ∴ab≤1, 即四边形PCDE面积的最大值为1. 故答案为:1 【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.   22.(2016•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=  . 【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可. 【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示: ∵∠A=60°,四边形ABCD是菱形, ∴∠MDF=60°, ∴∠MFD=30°, 设MD=x,则DF=2x,FM=x, ∵DG=1,∴MG=x+1, ∴(x+1)2+(x)2=(2﹣2x)2, 解得:x=0.3, ∴DF=0.6,AF=1.4, ∴AH=AF=0.7,FH=AF•sin∠A=1.4×=, ∵CD=BC,∠C=60°, ∴△DCB是等边三角形, ∵G是CD的中点, ∴BG⊥CD, ∵BC=2,GC=1, ∴BG=, 设BE=y,则GE=2﹣y, ∴()2+y2=(2﹣y)2, 解得:y=0.25, ∴AE=1.75, ∴EH=AE﹣AH=1.75﹣0.7=1.05, ∴EF===. 故答案为:. 【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.   23.(2016•丽水)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=  . 【分析】连接AC、EF,根据菱形的对角线互相垂直平分可得AC⊥BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=BD,然后判断出△ABD是等边三角形,再根据等边三角形的三个角都是60°求出∠ADB=60°,设EF与BD相交于点H,AB=4x,然后根据三角形的中位线平行于第三边并且等于第三边的一半求出EH,再求出DH,从而得到GH,利用勾股定理列式求出EG,最后求出比值即可. 【解答】解:如图,连接AC、EF, 在菱形ABCD中,AC⊥BD, ∵BE⊥AD,AE=DE, ∴AB=BD, 又∵菱形的边AB=AD, ∴△ABD是等边三角形, ∴∠ADB=60°, 设EF与BD相交于点H,AB=4x, ∵AE=DE, ∴由菱形的对称性,CF=DF, ∴EF是△ACD的中位线, ∴DH=DO=BD=x, 在Rt△EDH中,EH=DH=x, ∵DG=BD, ∴GH=BD+DH=4x+x=5x, 在Rt△EGH中,由勾股定理得,EG===2x, 所以,==. 故答案为:. 【点评】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,难点在于作辅助线构造出直角三角形以及三角形的中位线.   24.(2016•青岛)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为  . 【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论. 【解答】解:∵CE=5,△CEF的周长为18, ∴CF+EF=18﹣5=13. ∵F为DE的中点, ∴DF=EF. ∵∠BCD=90°, ∴CF=DE, ∴EF=CF=DE=6.5, ∴DE=2EF=13, ∴CD===12. ∵四边形ABCD是正方形, ∴BC=CD=12,O为BD的中点, ∴OF是△BDE的中位线, ∴OF=(BC﹣CE)=(12﹣5)=. 故答案为:. 【点评】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.   三.解答题(共16小题) 25.(2016•北京)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE. 【分析】由平行四边形的性质得出AB∥CD,得出内错角相等∠E=∠BAE,再由角平分线证出∠E=∠DAE,即可得出结论. 【解答】证明:∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠E=∠BAE, ∵AE平分∠BAD, ∴∠BAE=∠DAE, ∴∠E=∠DAE, ∴DA=DE. 【点评】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定;熟练
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:初中数学平行四边形提高题与常考题与培优题(含解析).doc
    链接地址:https://www.zixin.com.cn/doc/2332289.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork