分享
分销 收藏 举报 申诉 / 9
播放页_导航下方通栏广告

类型-反比例函数培优生试题讲义.doc

  • 上传人:精***
  • 文档编号:2304348
  • 上传时间:2024-05-27
  • 格式:DOC
  • 页数:9
  • 大小:272.17KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整 word 反比例 函数 优生 试题 讲义
    资源描述:
    第六章 反比例函数培优生试题讲义 (资料编辑:薛思优) 1.如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为(  ) A. B. C. D. 2.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是(  ) A.一直不变 B.先增大后减小 C.先减小后增大 D.先增大后不变 3.函数y=(m2﹣m)是反比例函数,则(  ) A.m≠0 B.m≠0且m≠1 C.m=2 D.m=1或2 4.反比例函数y=的图象如图所示,以下结论正确的是(  ) ①常数m<1; ②y随x的增大而减小; ③若A为x轴上一点,B为反比例函数上一点,则S△ABC=; ④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上. A.①②③ B.①③④ C.①②③④ D.①④ 5.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论: ①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程 2x2﹣2x﹣k=0有解. 其中正确结论的个数是(  ) A.1 B.2 C.3 D.4 6.反比例函数的图象上有两点M,N,那么图中阴影部分面积最大的是(  ) A. B. C. D. 7.如图所示,在平面坐标系中,AB⊥x轴,反比例函数y=(k1≠0)过B点,反比例函数y=(k2≠0)过C、D点,OC=BC,B(2,3),则D点的坐标为(  ) A.(,) B.(,) C.(,) D.(,) 8.如图,直线y=﹣x+b与双曲线交于点A、B,则不等式组的解集为(  ) A.﹣1<x<0 B.x<﹣1或x>2 C.﹣1<x≤1 D.﹣1<x<1 9.如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是(  ) A.y1<y3<y2 B.y2<y1<y3 C.y1<y2<y3 D.y3<y2<y1 10.反比例函数y=(k≠0)的图象经过点(﹣1,﹣2),当自变量x>1时,函数值y的取值范围是(  ) A.y>1 B.y<1 C.y>2 D.0<y<2 11.如图,一次函数y=ax+b与x轴、y轴交于A、B两点,与反比例函数y=相交于C、D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E、F,连接CF、DE、EF. 有下列三个结论:①△CEF与△DEF的面积相等;②△DCE≌△CDF;③AC=BD.其中正确的结论个数是(  ) A.0 B.1 C.2 D.3 12.如图,反比例函数的图象经过点A(2,1),若y≤1,则x的范围为(  ) A.x≥1 B.x≥2 C.x<0或0<x≤1 D.x<0或x≥2 13.若函数的图象经过点(3,﹣4),则它的图象一定还经过点(  ) A.(3,4) B.(2,6) C.(﹣12,1) D.(﹣3,﹣4) 14.若直线y=2x﹣1与反比例函数y=的图象交于点P(2,a),则反比例函数y=的图象还必过点(  ) A.(﹣1,6) B.(1,﹣6) C.(﹣2,﹣3) D.(2,12) 15.如图,反比例函数y=﹣(x>0)图象经过矩形OABC边AB的中点E,交边BC于F点,连接EF、OE、OF,则△OEF的面积是(  ) A. B. C. D. 16.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(k≠0)的图象上,则点E的坐标为(  ) A. B.() C.() D.() 17.若点(﹣,y1),(﹣π,y2),(a2+1,y3)都是反比例函数y=上的点,则下列各式中,正确的是(  ) A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1 17.如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为(  ) A. B.5 C. D. 18.在反比例函数y=图象上的有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围为(  ) A.m>0 B.m<0 C.m< D.m> 19.如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为   . 20. 如图,在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公点,若直线y=﹣x+b与反比例函数y=的图象没有公共点,则b的取值范围是   . 二、填空题 21.如图,直线y=﹣x+b与双曲线y=(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,AC⊥x轴于点C,BD⊥y轴于点D,当b=  时,△ACE、△BDF与△ABO面积的和等于△EFO面积的. 22.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=  . 23.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为  . 24.如图,矩形OABC的两边OA,OC分别在x轴和y轴的正半轴上,点G为矩形对角线的交点,经过点G的双曲线y=在第一象限的图象与BC相交于点M,交AB于N,若B(4,2),则的值为  . 三、解答题 25.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求: (1)一次函数的解析式; (2)△AOB的面积; (3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围. 26.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,连接DE. (1)连接OE,若△EOA的面积为2,则k=  ; (2)连接CA、DE与CA是否平行?请说明理由; (3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由. 27.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上. (1)求证:△AOE与△BOF的面积相等; (2)求反比例函数的解析式; (3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由. 28.如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD. (1)求一次函数与反比例函数的解析式; (2)求四边形OCBD的面积. 29.如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3). (1)k=  ; (2)试说明AE=BF; (3)当四边形ABCD的面积为时,求点P的坐标. 30.如图,平面直角坐标系中,矩形OABC的一边OA在x轴上且B(4,3).双曲线交BC于点P,交AB于点Q. (1)若P为边BC的中点,求双曲线的函数表达式及点Q的坐标; (2)若双曲线和线段BC有公共点,求k的取值范围; (3)连接PQ,AC,当PQ存在时,PQ∥AC是否总成立?若成立请证明,若不成立也请说明理由. 31.如图,双曲线y=经过矩形OABC的边AB的中点D,交BC于点E.若四边形ODBE的面积为6. (1)试说明BE=CE; (2)求k的值. 32.已知一次函数y=2x﹣k与反比例函数y=的图象相交于A和B两点,其中有一个交点A的横坐标为3. (1)分别求两个函数的关系式; (2)求A、B两点的坐标及△AOB的面积; (3)若直线AB上有一点P,使得△APO∽△AOB,求P点坐标. 33.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2). (1)求这两个函数的表达式; (2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围. 34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC于点M,N,反比例函数y=的图象经过点M,N. (1)求反比例函数的解析式; (2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标. 35.据媒体报道,近期“禽流感H7N9”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“禽流感H7N9”,对教室进行“薰药消毒”.已知药物在燃烧释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y与x之间的函数关系式及自变量取值范围; (2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室? 36.学生上课时注意力集中的程度可以用注意力指数表示.某班学生在一节数学课中的注意力指数y随上课时间x(分钟)的变化图象如图.上课开始时注意力指数为30,第2分钟时注意力指数为40,前10分钟内注意力指数y是时间x的一次函数.10分钟以后注意力指数y是x的反比例函数. (1)当0≤x≤10时,求y关于x的函数关系式; (2)当10≤x≤40时,求y关于x的函数关系式; (3)如果讲解一道较难的数学题要求学生的注意力指数不小于50,为了保证教学效果本节课讲完这道题不能超过多少分钟? 第9页(共9页)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:-反比例函数培优生试题讲义.doc
    链接地址:https://www.zixin.com.cn/doc/2304348.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork