青岛市育才数学八年级上册期末试卷含答案.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 青岛市 育才 数学 年级 上册 期末试卷 答案
- 资源描述:
-
青岛市育才数学八年级上册期末试卷含答案 一、选择题 1、下列既是中心对称图形又是轴对称图形的是( ) A. B. C. D. 2、一个纳米粒子的直径是35纳米(1纳米米),用科学记数法表示为( ) A.米 B.米 C.米 D.米 3、下列运算正确的是( ) A. B. C. D. 4、满足( )条件时,分式有意义. A. B. C. D. 5、下列由左边到右边的变形,属于因式分解的是( ) A. B. C. D. 6、下列各式变形正确的是( ) A. B. C. D. 7、如图,点E,C,F,B在同一条直线上,ACDF,EC=BF,则添加下列条件中的一个条件后,不一定能判定△ABC≌△DEF的是( ) A.AC=DF B.AB=DE C.∠A=∠D D.ABDE 8、解关于的方程产生增根,则常数的值等于( ) A.-5 B.-4 C.-3 D.2 9、如图,ABCD,点E在AB上,∠AEC=60°,∠EFD=130°.则∠CEF的度数是( ) A.60° B.70° C.75° D.80° 二、填空题 10、如图,在中,,的外角平分线与内角平分线的延长线交于点,过点作交延长线于点,连接,点为中点.有下列结论:①;②;③;④.其中正确的是( ) A.①② B.③④ C.①②③ D.①②④ 11、若分式的值为0,则x的取值为_______. 12、在平面直角坐标系中,作点关于轴的对称点,得到点,再将点向右平移3个单位,得到点,则点的坐标为__________. 13、已知,则的值是_________ 14、已知,,求__________. 15、如图,A、B两点在直线l的同侧,在l上求作一点M,使AM+BM最小.小明的做法是:做点A关于直线l的对称点,连接,交直线l于点M,点M即为所求. 请你写出小明这样作图的依据:___________. 16、若多项式是完全平方式,则k的值是_________. 17、已知a,b均为实数,且+a2b2+9=6ab,则a2+b2=_______. 18、如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当△ACP与△BPQ全等时,点Q的运动速度为__cm/s. 三、解答题 19、(1)计算:(x+2y﹣2)(x﹣2y+2); (2)因式分解:﹣3x2+6xy﹣3y1、 20、(1)先化简,再求值:,其中; (2)解方程:. 21、如图,AE∥DF,AE=DF,其中点A、B、C、D在一条直线上. (1)请给题目添上一组条件:__________________________,使得△ACE≌△DBF,并完成其证明过程; (2)在(1)的条件下,若AD=14,BC=6,求线段BD的长. 22、(1)在图1中,已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数. (2)在图2中,∠B=x,∠C=y,其他条件不变,若把AD⊥BC于D改为F是AE上一点,FD⊥BC于D,试用x、y表示∠DFE= : (3)在图3中,当点F是AE延长线上一点,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么. (4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图3、试用x、y表示∠P= . 23、小红、小明两人在400m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.已知小明的速度是小红速度的1.25倍,两人跑完全程小红要比小明多用16s,求小红、小明两人匀速跑步的速度? 24、如图,将边长为的正方形剪出两个边长分别为,的正方形(阴影部分).观察图形,解答下列问题: (1)根据题意,用两种不同的方法表示阴影部分的面积,即用两个不同的代数式表示阴影部分的面积. 方法1:______,方法2:________; (2)从中你发现什么结论呢?_________; (3)运用你发现的结论,解决下列问题: ①已知,,求的值; ②已知,求的值. 25、如图,是等边三角形,点在上,点在的延长线上,且. (1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论. (3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由. 一、选择题 1、A 【解析】A 【分析】直接轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;中心对称图形:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,分析得出答案. 【详解】解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意; B.是轴对称图形,不是中心对称图形,故此选项不合题意; C.不是轴对称图形,是中心对称图形,故此选项不合题意; D.是轴对称图形,不是中心对称图形,故此选项不合题意; 故选:A. 【点睛】本题主要考查中心对称图形、轴对称对称图形的概念,能判断一个图形是否为轴对称图形和中心对称图形是解题关键. 2、C 【解析】C 【分析】根据1纳米=米,可得35纳米=米,即可得解. 【详解】∵1纳米=米, ∴35纳米=米=米, 故选:C. 【点睛】本题考查了用科学记数法表示绝对值小于1的数,一般形式为,准确确定a、n的值是解答本题的关键. 3、A 【解析】A 【分析】根据运算法则计算判断即可. 【详解】因为, 所以A计算正确; 因为, 所以B计算错误; 因为 所以C计算错误; 因为, 所以D计算错误; 故选A. 【点睛】本题考查了幂的计算,熟练掌握运算的法则是解题的关键. 4、D 【解析】D 【分析】直接利用分式有意义的条件解答即可. 【详解】解:要使分式有意义, ∴x−1≠0, 解得:x≠1, 故选:D. 【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件:分母不等于零,是解题的关键. 5、B 【解析】B 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式)逐项判断即可得. 【详解】解:A、等式右边不是乘积的形式,不属于因式分解,则此项不符合题意; B、等式右边是乘积的形式,且右边等于左边,属于因式分解,则此项符合题意; C、等式右边不是乘积的形式,不属于因式分解,则此项不符合题意; D、等式右边的不是整式,不属于因式分解,则此项不符合题意; 故选:B. 【点睛】本题考查了因式分解,熟记因式分解的定义是解题关键. 6、D 【解析】D 【分析】根据分式的基本性质即可判断. 【详解】解:A、,该选项不符合题意; B、,该选项不符合题意; C、,该选项不符合题意; D、,该选项符合题意; 故选:D. 【点睛】本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 7、B 【解析】B 【分析】先证明∠ACB=∠DFE,EF=BC,然后根据全等三角形的判定方法对各选项进行判断. 【详解】解:∵AC//DF, ∴∠ACB=∠DFE, ∵EC=BF, ∴EC+CF=BF+CF, 即EF=BC, ∴当添加AC=DF时,可根据“SAS”判定△ABC≌△DEF; 当添加∠A=∠D时,可根据“AAS”判定△ABC≌△DEF; 当添加AB∥DE时,∠B=∠E,可根据“ASA”判定△ABC≌△DEF. 故选:B. 【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件. 8、B 【解析】B 【分析】先把分式方程化为整式方程得到x=a+6,由于原分式方程有增根,则增根只能为2,然后在整式方程中当x=2时,求出对应的a的值即可. 【详解】】解:去分母得x-6=a, 解得x=a+6, 因为关于x的方程产生增根, 所以x=2,即a+6=2,解得a=-3、 故选:B. 【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根. 9、B 【解析】B 【分析】先利用平行线的性质求出∠C,再利用三角形外角性质求出∠CEF即可. 【详解】解:∵ABCD, ∴∠C=∠AEC=60°, ∵∠C+∠CEF=∠EFD=130°, ∴∠CEF=∠EFD-∠C=130°-60°=70°, 故选:B. 【点睛】本题考查平行线的性质,三角形外角的性质,熟练掌握相关性质是解题的关键. 二、填空题 10、D 【解析】D 【分析】由角平分线的性质和外角的性质可得,可求,故①正确,由余角的性质可证,故②正确,由“”可证,,可得,,,可得,,故③不正确、④正确;即可求解. 【详解】解:平分,平分, ,, , ,即, 又, ,故①正确; , , , , ,故②正确; 过点作于,如图所示: , , 点为中点, , 在中根据三角形三边关系可知,即,故③错误; , , 在和中, , , , , 在和中, , , , ,故④正确; 故选:D. 【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,外角的性质和三角形三边关系等知识,灵活运用这些性质解决问题是解题的关键. 11、 【分析】根据分式的值为零的条件可以求出x的值. 【详解】解:由题意得,,, 由得或, 由得, ∴. 故答案为:. 【点睛】本题考查分式为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可. 12、(-2,1) 【分析】设P点坐标为(x,y),根据关于轴对称的点的坐标特征和平移的方式可得(x+3,-y),从而可求出x和y的值,即得出P点坐标. 【详解】设P点坐标为(x,y), 根据关于轴对称的点的坐标特征可得(x,-y), 再根据点向右平移3个单位,得到点,则(x+3,-y), ∴x+3=1,-y=-1, 解得:x=-2, y=1, ∴点的坐标为(-2,1). 故答案为:(-2,1) 【点睛】本题考查关于坐标轴对称的点的坐标特点,点的平移.熟练掌握轴对称变换和平移的特点是解题关键. 13、 【分析】由,,利用两个等式之间的平方关系得出;再根据已知条件将各分母因式分解,通分,代入已知条件即可. 【详解】由平方得:, 且,则:, 由得:, ∴ 同理可得:,, ∴原式= = = = = 故答案为:. 【点睛】本题主要考查了分式的化简、求值问题;解题的关键是根据已知条件的结构特点,灵活运用有关公式将所给的代数式恒等变形,准确化简. 14、 【分析】根据同底数幂除法的运算法则进行计算即可. 【详解】解:,, , . 故答案为:. 【点睛】本题主要考查了同底数幂除法的运算法则,熟练掌握法则是解答此题的关键. 15、两点之间线段最短. 【分析】根据轴对称变换点A关于直线l的对称点,连接,交直线l于点M,根据对称性质得出AM=A′M,进而得出AM+BM=A′M+BM=A′B,在直线l的取M′,连接A′M′,BM′ 【解析】两点之间线段最短. 【分析】根据轴对称变换点A关于直线l的对称点,连接,交直线l于点M,根据对称性质得出AM=A′M,进而得出AM+BM=A′M+BM=A′B,在直线l的取M′,连接A′M′,BM′,利用两点之间线段最短得出A′M′+ BM′≥A′B即可. 【详解】解:作点A关于直线l的对称点,连接,交直线l于点M, ∴AM=A′M, ∴AM+BM=A′M+BM=A′B, 在直线l的取M′,连接A′M′,BM′, 则AM′=A′M′, ∴A′M′+ BM′≥A′B, 小明这样作图的依据:两点之间线段最短. 故答案为:两点之间线段最短. 【点睛】本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决.本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型. 16、±20 【分析】根据已知可得完全平方式是,依据对应相等可得k的值. 【详解】解:∵是一个完全平方式, ∴, ∵, ∴k=±20, 故答案为:±19、 【点睛】本题主要考查了完全平方式,完全平方式分两 【解析】±20 【分析】根据已知可得完全平方式是,依据对应相等可得k的值. 【详解】解:∵是一个完全平方式, ∴, ∵, ∴k=±20, 故答案为:±19、 【点睛】本题主要考查了完全平方式,完全平方式分两种,一种是两数和的平方,另一种是两数差的平方,算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央. 17、19 【分析】利用完全平方公式变形得到+(ab-3)2=0,求出a+b=5,ab=3,再利用完全公式变形计算即可. 【详解】解:∵+a2b2+9=6ab, ∴+a2b2+9-6ab=0, ∴+(ab 【解析】19 【分析】利用完全平方公式变形得到+(ab-3)2=0,求出a+b=5,ab=3,再利用完全公式变形计算即可. 【详解】解:∵+a2b2+9=6ab, ∴+a2b2+9-6ab=0, ∴+(ab-3)2=0, ∴a+b=5,ab=3, ∴a2+b2=(a+b)2-2ab=52-6=19, 故答案为:18、 【点睛】此题考查了完全平方公式的变形计算,算术平方根及偶次方根的非负性,正确掌握完全平方公式是解题的关键. 18、1或1.5 【分析】分两种情况讨论:当△ACP≌△BPQ时, 从而可得点的运动速度;当△ACP≌△BQP时,可得: 从而可得点的运动速度,从而可得答案. 【详解】解:当△ACP≌△BPQ时, 则AC 【解析】1或1.5 【分析】分两种情况讨论:当△ACP≌△BPQ时, 从而可得点的运动速度;当△ACP≌△BQP时,可得: 从而可得点的运动速度,从而可得答案. 【详解】解:当△ACP≌△BPQ时, 则AC=BP,AP=BQ, ∵AC=3cm, ∴BP=3cm, ∵AB=4cm, ∴AP=1cm, ∴BQ=1cm, ∴点Q的速度为:1÷(1÷1)=1(cm/s); 当△ACP≌△BQP时, 则AC=BQ,AP=BP, ∵AB=4cm,AC=BD=3cm, ∴AP=BP=2cm,BQ=3cm, ∴点Q的速度为:3÷(2÷1)=1.5(cm/s); 故答案为:1或1.4、 【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键. 三、解答题 19、(1);(2) 【分析】(1)根据整体思想把(2y-2)看作整体,然后再利用乘法公式进行求解; (2)先提取公因式-3,然后再利用完全平方公式进行因式分解即可. 【详解】解:(1)原式= = =; 【解析】(1);(2) 【分析】(1)根据整体思想把(2y-2)看作整体,然后再利用乘法公式进行求解; (2)先提取公因式-3,然后再利用完全平方公式进行因式分解即可. 【详解】解:(1)原式= = =; (2)原式=. 【点睛】本题主要考查乘法公式及因式分解,熟练掌握乘法公式及因式分解是解题的关键. 20、(1),;(2)无解 【分析】(1)先根据分式的加减计算括号内的,同时将除法转化为乘法,并将分子分母因式分解,进而根据分式的性质化简,最后将的值代入求解即可; (2)分式方程两边同时乘以公分母,将其 【解析】(1),;(2)无解 【分析】(1)先根据分式的加减计算括号内的,同时将除法转化为乘法,并将分子分母因式分解,进而根据分式的性质化简,最后将的值代入求解即可; (2)分式方程两边同时乘以公分母,将其转化为整式方程,进而解方程求解即可,最后注意检验. 【详解】解:(1)原式 , 当时,原式; (2)方程两边同乘,得, 去括号,得, 解得:, 检验:当时,, 所以原方程无解. 【点睛】本题考查了分式的化简求值,解分式方程,正确的计算是解题的关键. 21、(1)∠E=∠F,证明见解析;(2)10 【分析】(1)添加∠E=∠F,根据“角边角”即可证明△ACE≌△DBF; (2)根据全等三角形的性质可得,即可得出,求解即可. 【详解】解:(1)添加∠E= 【解析】(1)∠E=∠F,证明见解析;(2)10 【分析】(1)添加∠E=∠F,根据“角边角”即可证明△ACE≌△DBF; (2)根据全等三角形的性质可得,即可得出,求解即可. 【详解】解:(1)添加∠E=∠F; 证明:∵AE∥DF , ∴∠A=∠D, 在△ACE和△DBF中, ∴△ACE≌△DBF(ASA) (2)∵△ACE≌△DBF ∴AC=DB, ∴AC-BC=DB-BC,即 AB=DC=(AD-BC)=(14-6)=4, ∴BD=BC+CD=6+4=9、 【点睛】本题主要考查了全等三角形的判定与性质,熟知全等三角形的判定定理以及性质定理是解本题的关键. 22、(1)15°;(2);(3)结论应成立.(4). 【分析】(1)根据三角形内角和公式得出∠BAC=180°-∠B-∠C=180°-70°-40°=70°,根据AE平分∠BAC,得出∠BAE=,利用A 【解析】(1)15°;(2);(3)结论应成立.(4). 【分析】(1)根据三角形内角和公式得出∠BAC=180°-∠B-∠C=180°-70°-40°=70°,根据AE平分∠BAC,得出∠BAE=,利用AD⊥BC,得出∠BAD=90°-∠B=90°-70°=20°,然后用角的差计算即可; (2)根据三角形内角和得出∠BAC=180°-∠B-∠C=180°- x-y,根据AE平分∠BAC,得出∠EAC=,利用FD⊥BC,可得∠DFE+∠FED=90°,根据∠FED是△AEC的外角,可求∠FED=∠C+∠EAC=,利用余角求解即可; (3)结论应成立.过点A作AG⊥BC于G,根据三角形内角和得出∠BAC=180°-∠B-∠C=180°- x-y,根据AE平分∠BAC,得出∠BAE=,根据AG⊥BC,得出∠BAG=90°-∠B=90°-,可求∠GAE=∠BAE-∠BAG==,根据FD⊥BC,AG⊥BC,可证AG∥FD,利用平行线性质即可求解; (4)设AF与PD交于H,根据FD⊥BC,PD平分∠EDF,得出∠HDF=,根据PA平分∠BAE,∠BAE=,得出∠PAE=,根据对顶角性质∠AHP=∠FHD,结合三角形内角和得出∠P+∠PAE=∠HDF+∠EFD,即∠P+=45°+,求出∠P即可. 【详解】解:(1)∵∠B=70°,∠C=40°, ∴∠BAC=180°-∠B-∠C=180°-70°-40°=70°, ∵AE平分∠BAC, ∴∠BAE=, ∵AD⊥BC, ∴∠BDA=90°, ∴∠B+∠BAD=90°, ∴∠BAD=90°-∠B=90°-70°=20°, ∴∠DAE=∠BAE-∠BAD=35°-20°=15°; (2)∵∠B=x,∠C=y, ∴∠BAC=180°-∠B-∠C=180°- x-y, ∵AE平分∠BAC, ∴∠EAC=, ∵FD⊥BC, ∴∠EDE=90°, ∴∠DFE+∠FED=90°, ∵∠FED是△AEC的外角, ∴∠FED=∠C+∠EAC=, ∴∠DFE=90°-∠FED=, 故答案为:; (3)结论应成立. 过点A作AG⊥BC于G, ∵∠B=x,∠C=y, ∴∠BAC=180°-∠B-∠C=180°- x-y, ∵AE平分∠BAC, ∴∠BAE=, ∵AG⊥BC, ∴∠AGB=90°, ∴∠B+∠BAG=90°, ∴∠BAG=90°-∠B=90°-, ∴∠GAE=∠BAE-∠BAG==, ∵FD⊥BC,AG⊥BC, ∴AG∥FD, ∴∠EFD=∠GAE= (4)设AF与PD交于H, ∵FD⊥BC,PD平分∠EDF, ∴∠HDF=, ∵PA平分∠BAE,∠BAE=, ∴∠PAE=, ∵∠AHP=∠FHD,∠EFD= ∴∠P+∠PAE=∠HDF+∠EFD,即∠P+=45°+, ∴∠P=, 故答案为:. 【点睛】本题考查三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质是解题关键. 23、小红匀速跑步的速度为5m/s;小明匀速跑步的速度为6.25m/s 【分析】设小红速度为xm/s,则小明的速度为1.25xm/s,根据题意,得,解方程即可. 【详解】解:设小红速度为xm/s,则小明的 【解析】小红匀速跑步的速度为5m/s;小明匀速跑步的速度为6.25m/s 【分析】设小红速度为xm/s,则小明的速度为1.25xm/s,根据题意,得,解方程即可. 【详解】解:设小红速度为xm/s,则小明的速度为1.25xm/s, 根据题意,得, 解得, 经检验:是分式方程的解,1.25x=6.25, 答:小红、小明两人匀速跑步的速度分别为5m/s和6.25m/s. 【点睛】本题考查了分式方程的应用,熟练掌握分式方程的应用题是解题的关键. 24、(1),;(2);(3)①28;②. 【分析】(1)方法1可采用两个正方形的面积和,方法2可以用大正方形的面积减去两个长方形的面积; (2)由(1)中两种方法表示的面积是相等的,从而得出结论; (3 【解析】(1),;(2);(3)①28;②. 【分析】(1)方法1可采用两个正方形的面积和,方法2可以用大正方形的面积减去两个长方形的面积; (2)由(1)中两种方法表示的面积是相等的,从而得出结论; (3)①由(2)的结论,代入计算即可; ②设,,则,,求即可. 【详解】解:(1)方法1,阴影部分的面积是两个正方形的面积和,即, 方法2,从边长为的大正方形面积减去两个长为,宽为的长方形面积,即, 故答案为:,; (2)在(1)两种方法表示面积相等可得, , 故答案为:; (3)①, , 又, ; ②设,,则,, , 答:的值为. 【点睛】本题考查完全平方公式的几何背景,解题的关键是掌握完全平方公式的结构特征是正确应用的前提,用不同方法表示同一部分的面积是得出关系式的关键. 25、(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F,证△ 【解析】(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案. (3)如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE. 【详解】证明:是等边三角形, 为中点, ,, ; (2)成立, 如图乙,过作,交于, 则是等边三角形, , , ,, 在和中 , 即 如图3,过点作,交的延长线于点, 是等边三角形,也是等边三角形, , , 在和中, 【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




青岛市育才数学八年级上册期末试卷含答案.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/1754632.html