分享
分销 收藏 举报 申诉 / 21
播放页_导航下方通栏广告

类型初二数学上学期压轴题模拟综合试卷带解析(一)[001].doc

  • 上传人:天****
  • 文档编号:1716865
  • 上传时间:2024-05-08
  • 格式:DOC
  • 页数:21
  • 大小:769.54KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    001 初二 数学 上学 压轴 模拟 综合 试卷 解析
    资源描述:
    初二数学上学期压轴题模拟综合试卷带解析(一) 1.如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式. (1)________; (2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断△APN的形状并说明理由; (3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分∠ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG.试说明,CG与FG的数量关系. 2.已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,AC=CD,∠ACD=90°. (1)已知a,b满足等式|a +b|+b2+4b=-4. ①求A点和B点的坐标; ②如图1,连BD交y轴于点H,求点H的坐标; (2)如图2,已知a+b=0,OC>OB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论. 3.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE. (1)如图1,若点P与点C重合,求∠ABE的度数; (2)如图2,若P在C点上方,求证:PD+AC=CE; (3)若AC=6,CE=2,则PD的值为   (直接写出结果). 4.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE. (1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°. ①求证:AD=BE; ②求∠AEB的度数. (2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论. 5.已知:,. (1)当a,b满足时,连接AB,如图1. ①求:的值. ②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:. (2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论. 6.阅读材料1: 对于两个正实数,由于,所以,即,所以得到,并且当时, 阅读材料2: 若,则 ,因为,,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值. 根据以上阅读材料,请回答以下问题: (1)比较大小 (其中≥1);        -2(其中<-1) (2)已知代数式变形为,求常数的值 (3)当= 时,有最小值,最小值为 (直接写出答案). 7.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,. (1)如图1,若,求的度数. (2)如图1,求证:. (3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明). 8.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且. (1)直接写出的度数. (2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标. (3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值. 【参考答案】 2.(1)0 (2)等腰三角形,见解析 (3)CG=2FG 【分析】(1)由可得,得出a、b的值即可求解; (2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论; 解析:(1)0 (2)等腰三角形,见解析 (3)CG=2FG 【分析】(1)由可得,得出a、b的值即可求解; (2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论; (3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论. (1) 解得 (2) 是等腰三角形,理由如下: 由点A(a,0)、点B(b,0)为x轴上两点,且 可得,OA=OB OC垂直平分AB , 是等腰三角形 (3) ,理由如下: 如图,延长GF至点M,使FM=FG,连接CG、CM、AM F为AD的中点 在和中 垂直平分 ,BG平分 为等边三角形, 在和中    即是等腰三角形 为等边三角形    在 中, . 【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键. 3.(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y 解析:(1)①A(0,2),B(-2,0);②H(0,-2);(2)CF⊥OF,CF=OF,证明见解析. 【分析】(1)①利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案; ②过C作y轴垂线交BA的延长线于E,然后证明△CEA≌△CBD,得到OB=OH,即可得到答案; (2)由题意,先证明△DFG≌△EFO,然后证明△DCG≌△ACO,得到△OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立. 【详解】解:(1)∵, ∴, ∴, ∴,, ∴, ∴, ∴A(0,2),B(2,0); ②过C作x轴垂线交BA的延长线于E, ∵OA=OB=2,∠AOB=90°, ∴△AOB是等腰直角三角形, ∴∠ABO=45°, ∵EC⊥BC, ∴△BCE是等腰直角三角形, ∴BC=EC,∠BCE=90°=∠ACD, ∴∠ACE=∠DCB, ∵AC=DC, ∴△CEA≌△CBD, ∴∠CBD=∠E=45°, ∴OH=OB=2, ∴H(0,2); (2)补全图形,如图: ∵点B、E关于y轴对称, ∴OB=OE, ∵a+b=0,即 ∴OA=OB=OE 延长OF至G使FG=OF,连DG,CG, ∵OF=FG,∠OFE=∠DFG,EF=DF ∴△DFG≌△EFO ∴DG=OE=OA,∠DGF=∠EOF ∴DG∥OE ∴∠CDG=∠DCO; ∵∠ACO+∠CAO=∠ACO+∠DCO=90°, ∴∠DCO=∠CAO; ∴∠CDG=∠DCO=∠CAO; ∵CD=AC,OA=DG ∴△DCG≌△ACO ∴OC=GC,∠DCG=∠ACO ∴∠OCG=90°, ∴∠COF=45°, ∴△OCG是等腰直角三角形, 由三线合一定理得CF⊥OF ∵∠OCF=∠COF=45°, ∴CF=OF; 【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题. 4.(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; 解析:(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论; (3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可. 【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线, ∴PA=PB, ∴∠PAB=∠PBA=30°, ∴∠BPE=∠PAB+∠PBA=60°, ∵PB=PE, ∴△BPE为等边三角形, ∴∠CBE=60°, ∴∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G, ∵CD垂直平分AB, ∴CA=CB, ∵∠BAC=30°, ∴∠ACD=∠BCD=60°, ∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°, ∴∠GPC=∠HPC=30°, ∴PG=PH,CG=CH=CP,CD=AC, 在Rt△PGB和Rt△PHE中, , ∴Rt△PGB≌Rt△PHE(HL). ∴BG=EH,即CB+CG=CE-CH, ∴CB+CP=CE-CP,即CB+CP=CE, 又∵CB=AC, ∴CP=PD-CD=PD-AC, ∴PD+AC=CE; (3)①当P在C点上方时,由(2)得:PD=CE-AC, 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ②当P在线段CD上时, 如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G, 此时Rt△PGB≌Rt△PHE(HL), ∴BG=EH,即CB-CG=CE+CH, ∴CB-CP=CE+CP,即CP=CB-CE, 又∵CB=AC, ∴PD=CD-CP=AC-CB+CE, ∴PD=CE-AC. 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ③当P在D点下方时,如图4, 同理,PD=AC-CE, 当AC=6,CE=2时,PD=3-2=1. 故答案为:1. 【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论. 5.(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析. 【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全 解析:(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析. 【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE; ②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数; (2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论. 【详解】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°, ∴∠ACB=∠DCE=180°﹣2×50°=80°, ∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE, ∴∠ACD=∠BCE, ∵△ACB,△DCE都是等腰三角形, ∴AC=BC,DC=EC, 在△ACD和△BCE中, , ∴△ACD≌△BCE(SAS), ∴AD=BE. ②解:∵△ACD≌△BCE, ∴∠ADC=∠BEC, ∵点A、D、E在同一直线上,且∠CDE=50°, ∴∠ADC=180°﹣∠CDE=130°, ∴∠BEC=130°, ∵∠BEC=∠CED+∠AEB,∠CED=50°, ∴∠AEB=∠BEC﹣∠CED=80°. (2)结论:AE=2CF+BE. 理由:∵△ACB,△DCE都是等腰直角三角形, ∴∠CDE=∠CED=45°, ∵CF⊥DE, ∴∠CFD=90°,DF=EF=CF, ∵AD=BE, ∴AE=AD+DE=BE+2CF. 【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键. 6.(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明 解析:(1)10;证明见解析; (2),,理由见解析; 【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明; (2)证明,得到,,再利用等量代换证明; (1) 解:①由图可知, ∵ ∴,即, ∴,, ∴; ②作交AB与点C,交AB与点F,如图, ∵,, ∴, 在和中, ∴, ∴,,, ∵, ∴, ∴, ∴,即, ∵, ∴, ∴, ∵, ∴, 即, (2) 解:,,理由如下: 假设DE交BC于点G, 有已知可知:,,,, ∴, ∵ ∴ ∵,且, ∴, 在和中, ∴, ∴,, ∵, ∴, ∴, 【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明. 7.(1);(2);(3)0,3. 【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论. (2)根据材料(2)的方法,把代数式变形为,解答即可; (3)先将变形为,由材料 解析:(1);(2);(3)0,3. 【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论. (2)根据材料(2)的方法,把代数式变形为,解答即可; (3)先将变形为,由材料(2)可知时(即x=0,)有最小值. 【详解】解:(1),所以; 当时,由阅读材料1可得,, 所以; (2) , 所以; (3) ∵x≥0, ∴ 即:当时,有最小值, ∴当x=0时,有最小值为3. 【点睛】本题主要考查了分式的混合运算和配方法的应用.读懂材料并加以运用是解题的关键. 8.(1)∠BAC=50°; (2)见解析; (3) 【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证 解析:(1)∠BAC=50°; (2)见解析; (3) 【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) ∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:延长AD至H,使DH=AD,连接BH, ∵EF=2AD, ∴AH=EF, 在△BDH和△CDA中, , ∴△BDH≌△CDA, ∴HB=AC=AF,∠BHD=∠CAD, ∴AC∥BH, ∴∠ABH+∠BAC=180°, ∵∠EAF+∠BAC=180°, ∴∠EAF=∠ABH, 在△ABH和△EAF中, , ∴△ABH≌△EAF, ∴∠AEF=∠ABH,EF=AH=2AD, (3) 结论:∠GAF-∠CAF=60°. 由(1)得,AD=EF,又点G为EF中点, ∴EG=AD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°, ∴△AEB是等边三角形, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF,∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°-∠CAF)=150°, ∴∠GAF-∠CAF=60°. . 【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 9.(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明 解析:(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得 (3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值. 【详解】(1)∵点在x轴负半轴上, ∴,, ∵,, ∴, ∵, ∴, ∴, 如答图1,在x轴的正半轴上取点C,使,连接BC, ∵, ∴, 又∵, ∴, ∴, ∴是等边三角形, ∴; (2)如答图2,连接BM, ∴是等边三角形, ∵,, ∵∠, ∴, ∴, ∵D为AB的中点, ∴, ∵, ∴, ∴,在和中, ∴, ∴,即, ∴, ∴为等边三角形, ∴,∴; (3)如答图3,过点F作轴交CB的延长线于点N, 则, ∵, ∴, 在和中, ∴, ∴,, ∵, ∴, 又∵E是OC的中点,设, ∴等边三角形ABC的边长是4a,, ∵, ∴, 在和中, ∴, ∴, 又∵, ∴, , ∴. 【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:初二数学上学期压轴题模拟综合试卷带解析(一)[001].doc
    链接地址:https://www.zixin.com.cn/doc/1716865.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork