分享
分销 收藏 举报 申诉 / 6
播放页_导航下方通栏广告

类型数列中裂项求和的几种常见模型.doc

  • 上传人:1587****927
  • 文档编号:1364037
  • 上传时间:2024-04-24
  • 格式:DOC
  • 页数:6
  • 大小:196.01KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整 word 数列 中裂项 求和 常见 模型
    资源描述:
    数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列是以d为公差的等差数列,且,则 例1已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。 (Ⅰ)求数列的通项公式; (Ⅱ)设,是数列的前n项和,求使得对所有都成立的最小正整数m; (2006年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得 a=3 , b=-2, 所以 f(x)=3x2-2x. 又因为点均在函数的图像上,所以=3n2-2n. 当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5. 当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 () (Ⅱ)由(Ⅰ)得知==, 故Tn===(1-). 因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.. 例2在xoy平面上有一系列点 ,…,,…,(n∈N*),点Pn在函数的图象上,以点Pn为圆心的圆Pn与x轴都相切,且圆Pn与圆Pn+1又彼此外切. 若. (I)求数列的通项公式; (II)设圆Pn的面积为 解:(I)圆Pn与Pn+1彼此外切,令rn为圆Pn的半径, 两边平方并化简得 由题意得,圆Pn的半径 为首项,以2为公差的等差数列, 所以 (II), 所以, 模型二:分母有理化,如: 例3已知,的反函数为,点在曲线上,且 (I)证明数列{}为等差数列; (Ⅱ)设,记,求 解(I)∵点An()在曲线y=g(x)上(n∈N+), ∴点()在曲线y=f(x)上(n∈N+),并且an>0 ,,∴数列{}为等差数列 (Ⅱ)∵数列{}为等差数列,并且首项为=1,公差为4, ∴=1+4(n—1),∴,∵an>0,∴, bn==, ∴Sn=b1+b2+…+bn== 例4设,则不超过的最大整数为       。 (2008年全国高中数学联合竞赛浙江省预赛试题) 解:  , , , , 不超过的最大整数为。 模型三: = - 例5设数列的前项的和,n=1,2,3,…. (Ⅰ)求首项与通项; (Ⅱ)设,n=1,2,3,…,证明: (2006年全国数学高考理科试题) . 解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ① 得 a1=S1= a1-×4+ 所以a1=2. 再由①有 Sn-1=an-1-×2n+, n=2,3,4,… 将①和②相减得: an=Sn-Sn-1= (an-an-1)-×(2n+1-2n),n=2,3, … 整理得: an+2n=4(an-1+2n-1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列, 即an+2n=4×4n-1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …, (Ⅱ)将an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2) = ×(2n+1-1)(2n-1) Tn= = × = ×( - ) 所以, = - ) = ×( - ) < 模型四:,且,则 例6设函数的图象在处的切线平行于直线.记的导函数为.数列满足:,. (Ⅰ)求函数的解析式; (Ⅱ)试判断数列的增减性,并给出证明; (Ⅲ)当时,证明:. 解:(Ⅰ)∵函数的导函数为,由于在处的切线平行于,∴,∴ (Ⅱ)∵,∴,∵,故,所以 ,所以是单调递增. (Ⅲ) ∵,∴=,∴ ∴,,… 令 当时, ∴ 例7已知数列满足,满足 ,证明: 。 (2006年全国高中数学联合竞赛浙江省预赛试题) 证明:记 ,则 。 而。 因为,所以。 从而有 。 (1) 又因为,所以, 即。从而有 。 (2) 由(1)和(2)即得 。 综合得到 。 左边不等式的等号成立当且仅当 n=1时成立。 以上我们通过几个典型问题的解析,总结了四类裂项求和的常见模型,可以让我们更清楚的认识到裂项相消的来龙去脉,而这些模型是近几年高考中普遍采用的,要求我们注重培养学生的化归、转化的能力。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:数列中裂项求和的几种常见模型.doc
    链接地址:https://www.zixin.com.cn/doc/1364037.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork