分享
分销 收藏 举报 申诉 / 26
播放页_导航下方通栏广告

类型2025年备战中考数学平行四边形培优易错试卷练习含答案附详细答案.doc

  • 上传人:精***
  • 文档编号:13012933
  • 上传时间:2026-01-05
  • 格式:DOC
  • 页数:26
  • 大小:1.18MB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2025 备战 中考 数学 平行四边形 培优易错 试卷 练习 答案 详细
    资源描述:
    -备战中考数学 平行四边形 培优易错试卷练习(含答案)附详细答案 一、平行四边形 1.(问题情景)运用三角形面积相等来求解措施是一种常见等积法,此措施是我们处理几何问题途径之一. 例如:张老师给小聪提出这样一种问题: 如图1,在△ABC中,AB=3,AD=6,问△ABC高AD与CE比是多少? 小聪计算思绪是: 根据题意得:S△ABC=BC•AD=AB•CE. 从而得2AD=CE,∴ 请运用上述材料中所积累经验和措施处理下列问题: (1)(类比探究) 如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF, 求证:BO平分角AOC. (2)(探究延伸) 如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间距离为4.求证:PA•PB=2AB. (3)(迁移应用) 如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分别为AE、BE中点,连接DM、CN.求△DEM与△CEN周长之和. 【答案】(1)见解析;(2)见解析;(3)5+ 【解析】 分析:(1)、根据平行四边形性质得出△ABF和△BCE面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF勾股定理得出x值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形周长之和. 同理:EM+EN=AB 详解:证明:(1)如图2, ∵四边形ABCD是平行四边形, ∴S△ABF=S▱ABCD,S△BCE=S▱ABCD, ∴S△ABF=S△BCE, 过点B作OG⊥AF于G,OH⊥CE于H, ∴S△ABF=AF×BG,S△BCE=CE×BH, ∴AF×BG=CE×BH,即:AF×BG=CE×BH, ∵AF=CE, ∴BG=BH, 在Rt△BOG和Rt△BOH中,, ∴Rt△BOG≌Rt△BOH, ∴∠BOG=∠BOH, ∴OB平分∠AOC, (2)如图3,过点P作PG⊥n于G,交m于F, ∵m∥n, ∴PF⊥AC, ∴∠CFP=∠BGP=90°, ∵点P是CD中点, 在△CPF和△DPG中,, ∴△CPF≌△DPG, ∴PF=PG=FG=2, 延长BP交AC于E, ∵m∥n, ∴∠ECP=∠BDP, ∴CP=DP, 在△CPE和△DPB中,, ∴△CPE≌△DPB, ∴PE=PB, ∵∠APB=90°, ∴AE=AB, ∴S△APE=S△APB, ∵S△APE=AE×PF=AE=AB,S△APB=AP×PB, ∴AB=AP×PB, 即:PA•PB=2AB; (3)如图4,延长AD,BC交于点G, ∵∠BAD=∠B, ∴AG=BG,过点A作AF⊥BC于F, 设CF=x(x>0), ∴BF=BC+CF=x+2, 在Rt△ABF中,AB=, 根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2, 在Rt△ACF中,AC=, 根据勾股定理得,AF2=AC2﹣CF2=26﹣x2, ∴34﹣(x+2)2=26﹣x2, ∴x=﹣1(舍)或x=1, ∴AF==5, 连接EG, ∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE), ∴DE+CE=AF=5, 在Rt△ADE中,点M是AE中点, ∴AE=2DM=2EM, 同理:BE=2CN=2EN, ∵AB=AE+BE, ∴2DM+2CN=AB, ∴DM+CN=AB, 同理:EM+EN=AB ∴△DEM与△CEN周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)] =(DE+CN)+AB=5+. 点睛:本题重要考察就是三角形全等判定与性质以及三角形等积法,综合性非常强,难度较大.在处理这个问题关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间关系. 2.(1)、动手操作: 如图①:将矩形纸片ABCD折叠,使点D与点B重叠,点C落在点处,折痕为EF,若∠ABE=20°,那么度数为 . (2)、观测发现: 小明将三角形纸片ABC(AB>AC)沿过点A直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重叠,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请阐明理由. (3)、实践与运用: 将矩形纸片ABCD按如下环节操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重叠,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF大小. 【答案】(1)125°;(2)同意;(3)60° 【解析】 试题分析:(1)根据直角三角形两个锐角互余求得∠AEB=70°,根据折叠重叠角相等,得∠BEF=∠DEF=55°,根据平行线性质得到∠EFC=125°,再根据折叠性质得到∠EFC′=∠EFC=125°; (2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形; (3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可. 试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°, ∴∠AEB=70°, ∴∠BED=110°, 根据折叠重叠角相等,得∠BEF=∠DEF=55°. ∵AD∥BC, ∴∠EFC=125°, 再根据折叠性质得到∠EFC′=∠EFC=125°.; (2)、同意,如图,设AD与EF交于点G 由折叠知,AD平分∠BAC,因此∠BAD=∠CAD. 由折叠知,∠AGE=∠DGE=90°, 因此∠AGE=∠AGF=90°, 因此∠AEF=∠AFE. 因此AE=AF, 即△AEF为等腰三角形. (3)、由题意得出:∠NMF=∠AMN=∠MNF, ∴MF=NF, 由折叠可知,MF=PF, ∴NF=PF, 而由题意得出:MP=MN, 又∵MF=MF, ∴△MNF≌△MPF, ∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°, 即3∠MNF=180°, ∴∠MNF=60°. 考点:1.折叠性质;2.等边三角形性质;3.全等三角形判定和性质;4.等腰三角形判定 3.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO,试阐明HO平分∠BHG; (3)当点E、F运动到如图3所示位置时,其他条件不变,请将图形补充完整,并直接写出∠BHO度数. 【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°. 【解析】 试题分析:(1)①根据正方形性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,因此∠DAG=∠DCG;②根据正方形性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,因此∠DAG=∠ABE,然后运用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE; (2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立; (3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,因此HO平分∠BHG,即∠BHO=45°. 试题解析:(1)①∵四边形ABCD为正方形, ∴DA=DC,∠ADB=∠CDB=45°, 在△ADG和△CDG中 , ∴△ADG≌△CDG(SAS), ∴∠DAG=∠DCG; ②AG⊥BE.理由如下: ∵四边形ABCD为正方形, ∴AB=DC,∠BAD=∠CDA=90°, 在△ABE和△DCF中 , ∴△ABE≌△DCF(SAS), ∴∠ABE=∠DCF, ∵∠DAG=∠DCG, ∴∠DAG=∠ABE, ∵∠DAG+∠BAG=90°, ∴∠ABE+∠BAG=90°, ∴∠AHB=90°, ∴AG⊥BE; (2)由(1)可知AG⊥BE. 如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形. ∴∠MON=90°, 又∵OA⊥OB, ∴∠AON=∠BOM. ∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°, ∴∠OAN=∠OBM. 在△AON与△BOM中, ∴△AON≌△BOM(AAS). ∴OM=ON, ∴矩形OMHN为正方形, ∴HO平分∠BHG. (3)将图形补充完整,如答图2示,∠BHO=45°. 与(1)同理,可以证明AG⊥BE. 过点O作OM⊥BE于点M,ON⊥AG于点N, 与(2)同理,可以证明△AON≌△BOM, 可得OMHN为正方形,因此HO平分∠BHG, ∴∠BHO=45°. 考点:1、四边形综合题;2、全等三角形判定与性质;3、正方形性质 4.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动. (1)如图1,当b=2a,点M运动到边AD中点时,请证明∠BMC=90°; (2)如图2,当b>2a时,点M在运动过程中,与否存在∠BMC=90°,若存在,请给与证明;若不存在,请阐明理由; (3)如图3,当b<2a时,(2)中结论与否仍然成立?请阐明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】 试题分析:(1)由b=2a,点M是AD中点,可得AB=AM=MD=DC=a,又由四边形ABCD是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°; (2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等实数根,且两根均不小于零,符合题意; (3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0根状况,即可求得答案. 试题解析:(1)∵b=2a,点M是AD中点, ∴AB=AM=MD=DC=a, 又∵在矩形ABCD中,∠A=∠D=90°, ∴∠AMB=∠DMC=45°, ∴∠BMC=90°. (2)存在, 理由:若∠BMC=90°, 则∠AMB+∠DMC=90°, 又∵∠AMB+∠ABM=90°, ∴∠ABM=∠DMC, 又∵∠A=∠D=90°, ∴△ABM∽△DMC, ∴, 设AM=x,则, 整理得:x2﹣bx+a2=0, ∵b>2a,a>0,b>0, ∴△=b2﹣4a2>0, ∴方程有两个不相等实数根,且两根均不小于零,符合题意, ∴当b>2a时,存在∠BMC=90°, (3)不成立. 理由:若∠BMC=90°, 由(2)可知x2﹣bx+a2=0, ∵b<2a,a>0,b>0, ∴△=b2﹣4a2<0, ∴方程没有实数根, ∴当b<2a时,不存在∠BMC=90°,即(2)中结论不成立. 考点:1、相似三角形判定与性质;2、根鉴别式;3、矩形性质 5.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O直线分别交AB,CD边于点E,F. (1)求证:四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,求EF长. 【答案】(1)证明见解析;(2). 【解析】 分析:(1)根据平行四边形ABCD性质,判定△BOE≌△DOF(ASA),得出四边形BEDF对角线互相平分,进而得出结论; (2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF长. 详解:(1)证明:∵四边形ABCD是矩形,O是BD中点, ∴∠A=90°,AD=BC=4,AB∥DC,OB=OD, ∴∠OBE=∠ODF, 在△BOE和△DOF中, ∴△BOE≌△DOF(ASA), ∴EO=FO, ∴四边形BEDF是平行四边形; (2)当四边形BEDF是菱形时,BD⊥EF, 设BE=x,则 DE=x,AE=6-x, 在Rt△ADE中,DE2=AD2+AE2, ∴x2=42+(6-x)2, 解得:x= , ∵BD= =2, ∴OB=BD=, ∵BD⊥EF, ∴EO==, ∴EF=2EO=. 点睛:本题重要考察了矩形性质,菱形性质、勾股定理、全等三角形判定与性质,纯熟掌握矩形性质和勾股定理,证明三角形全等是处理问关键 6.已知:如图,在平行四边形ABCD中,O为对角线BD中点,过点O直线EF分别交AD,BC于E,F两点,连结BE,DF. (1)求证:△DOE≌△BOF. (2)当∠DOE等于多少度时,四边形BFDE为菱形?请阐明理由. 【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析. 【解析】 试题分析:(1)运用平行四边形性质以及全等三角形判定措施得出△DOE≌△BOF(ASA); (2)首先运用一组对边平行且相等四边形是平行四边形得出四边形EBFD是平行四边形,进而运用垂直平分线性质得出BE=ED,即可得出答案. 试题解析:(1)∵在▱ABCD中,O为对角线BD中点, ∴BO=DO,∠EDB=∠FBO, 在△EOD和△FOB中 , ∴△DOE≌△BOF(ASA); (2)当∠DOE=90°时,四边形BFDE为菱形, 理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形, ∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形. 考点:平行四边形性质;全等三角形判定与性质;菱形判定. 7.如图,正方形ABCD边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D长为? 【答案】或 【解析】 【分析】 分两种状况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=; 【详解】 如图1,当∠AB′F=90°时,此时A、B′、E三点共线, ∵∠B=90°,∴AE==10, ∵B′E=BE=6,∴AB′=4, ∵B′F=BF,AF+BF=AB=8, 在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2, ∴AF=5,BF=3, 过点B′作B′M⊥AB,B′N⊥AD,由三角形面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2, ∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6, 在Rt△CB′N中,由勾股定理得,B′D= = ; 如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2, 过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2, 在Rt△CB′N中,由勾股定理得,B′D= = ; 综上,可得B′D长为或. 【点睛】 本题重要考察正方形性质与判定,矩形有性质判定、勾股定理、折叠性质等,能对地画出图形并能分类讨论是解题关键. 8.(1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点处,若,则度数为______. (2)小明手中有一张矩形纸片,,. (画一画)如图2,点在这张矩形纸片边上,将纸片折叠,使落在所在直线上,折痕设为(点,分别在边,上),运用直尺和圆规画出折痕(不写作法,保留作图痕迹,并用黑色水笔把线段描清晰); (算一算)如图3,点在这张矩形纸片边上,将纸片折叠,使落在射线上,折痕为,点分别落在点,处,若,求长. 【答案】(1)21;(2)画一画;见解析;算一算: 【解析】 【分析】 (1)运用平行线性质以及翻折不变性即可处理问题; (2)【画一画】,如图2中,延长BA交CE延长线由G,作∠BGC角平分线交AD于M,交BC于N,直线MN即为所求; 【算一算】首先求出GD=9-,由矩形性质得出AD∥BC,BC=AD=9,由平行线性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三角形判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再运用翻折不变性,可知FB′=FB,由此即可处理问题. 【详解】 (1)如图1所示: ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠ADB=∠DBC=42°, 由翻折性质可知,∠DBE=∠EBC=∠DBC=21°, 故答案为21. (2)【画一画】如图所示: 【算一算】 如3所示: ∵AG=,AD=9, ∴GD=9-, ∵四边形ABCD是矩形, ∴AD∥BC,BC=AD=9, ∴∠DGF=∠BFG, 由翻折不变性可知,∠BFG=∠DFG, ∴∠DFG=∠DGF, ∴DF=DG=, ∵CD=AB=4,∠C=90°, ∴在Rt△CDF中,由勾股定理得:CF=, ∴BF=BC-CF=9, 由翻折不变性可知,FB=FB′=, ∴B′D=DF-FB′=. 【点睛】 四边形综合题,考察了矩形性质、翻折变换性质、勾股定理、等腰三角形判定、平行线性质等知识,解题关键是灵活运用所学知识处理问题,学会运用翻折不变性处理问题. 9.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上. (1)如图1,若点P与点O重叠:①求证:AF=DE;②若正方形边长为2,当∠DOE=15°时,求线段EF长; (2)如图2,若Rt△PFE顶点P在线段OB上移动(不与点O、B重叠),当BD=3BP时,证明:PE=2PF. 【答案】(1)①证明见解析,②;(2)证明见解析. 【解析】 【分析】 (1)①根据正方形性质和旋转性质即可证得:△AOF≌△DOE根据全等三角形性质证明; ②作OG⊥AB于G,根据余弦概念求出OF长,根据勾股定理求值即可; (2)首先过点P作HP⊥BD交AB于点H,根据相似三角形判定和性质求出PE与PF数量关系. 【详解】 (1)①证明:∵四边形ABCD是正方形, ∴OA=OD,∠OAF=∠ODE=45°,∠AOD=90°, ∴∠AOE+∠DOE=90°, ∵∠EPF=90°, ∴∠AOF+∠AOE=90°, ∴∠DOE=∠AOF, 在△AOF和△DOE中, , ∴△AOF≌△DOE, ∴AF=DE; ②解:过点O作OG⊥AB于G, ∵正方形边长为2, ∴OG=BC=, ∵∠DOE=15°,△AOF≌△DOE, ∴∠AOF=15°, ∴∠FOG=45°-15°=30°, ∴OF==2, ∴EF=; (2)证明:如图2,过点P作HP⊥BD交AB于点H, 则△HPB为等腰直角三角形,∠HPD=90°, ∴HP=BP, ∵BD=3BP, ∴PD=2BP, ∴PD=2HP, 又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°, ∴∠HPF=∠DPE, 又∵∠BHP=∠EDP=45°, ∴△PHF∽△PDE, ∴, ∴PE=2PF. 【点睛】 此题属于四边形综合题.考察了正方形性质、全等三角形判定与性质、相似三角形判定与性质以及勾股定理.注意精确作出辅助线是解此题关键. 10.点P是矩形ABCD对角线AC所在直线上一种动点(点P不与点A,C重叠),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC中点. (1)如图1,当点P与点O重叠时,请你判断OE与OF数量关系; (2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中结论与否仍然成立; (3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样数量关系,直接写出结论不必证明. 【答案】(1)OE=OF.理由见解析;(2)补全图形如图所示见解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE. 【解析】 【分析】 (1)根据矩形性质以及垂线,即可判定,得出OE=OF; (2)先延长EO交CF于点G,通过判定,得出OG=OE,再根据中,,即可得到OE=OF; (3)根据点P在射线OA上运动,需要分两种状况进行讨论:当点P在线段OA上时,当点P在线段OA延长线上时,分别根据全等三角形性质以及线段和差关系进行推导计算即可. 【详解】 (1)OE=OF.理由如下: 如图1. ∵四边形ABCD是矩形,∴ OA=OC. ∵,,∴. ∵在和中,,∴,∴ OE=OF; (2)补全图形如图2,OE=OF仍然成立.证明如下: 延长EO交CF于点G. ∵,,∴ AE//CF,∴. 又∵点O为AC中点,∴ AO=CO. 在和中,,∴,∴ OG=OE,∴中,,∴ OE=OF; (3)CF=OE+AE或CF=OE-AE. 证明如下:①如图2,当点P在线段OA上时. ∵,,∴,由(2)可得:OF=OG,∴是等边三角形,∴ FG=OF=OE,由(2)可得:,∴ CG=AE. 又∵ CF=GF+CG,∴ CF=OE+AE; ②如图3,当点P在线段OA延长线上时. ∵,,∴,同理可得:是等边三角形,∴ FG=OF=OE,同理可得:,∴ CG=AE. 又∵ CF=GF-CG,∴ CF=OE-AE. 【点睛】 本题属于四边形综合题,重要考察了矩形性质、全等三角形性质和判定以及等边三角形性质和判定,处理问题关键是构建全等三角形和证明三角形全等,运用矩形对角线互相平分得全等边相等条件,根据线段和差关系使问题得以处理. 11.如图,抛物线交x轴正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n, (1)求a值及点A坐标; (2)当点D恰好落在抛物线上时,求n值; (3)记CD与抛物线交点为E,连接AE,BE,当△AEB面积为7时,n=___________.(直接写出答案) 【答案】(1), A(3,0);(2) 【解析】 试题解析:(1)把点B坐标代入抛物线解析式中,即可求出a值,令y=0即可求出点A坐标. (2)求出点D坐标即可求解; (3)运用△AEB面积为7,列式计算即可得解. 试题解析:(1)当时, 由 ,得(舍去),(1分) ∴A(3,0) (2)过D作DG⊥轴于G,BH⊥轴于H. ∵CD∥AB,CD=AB ∴, ∴, ∴ (3) 12.如图1,若分别以△ABCAC、BC两边为边向外侧作四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形. (1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF面积相等. (2)引申:假如∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请阐明理由; (3)运用:如图3,分别以△ABC三边为边向外侧作四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分面积和有最大值是________. 【答案】(1)证明见解析;(2)成立,证明见解析;(3)18. 【解析】 试题分析:(1)由于AC=DC,∠ACB=∠DCF=90°,BC=FC,因此△ABC≌△DFC,从而△ABC与△DFC面积相等; (2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.因此△APC≌△DQC. 于是AP=DQ.又由于S△ABC=BC•AP,S△DFC=FC•DQ,因此S△ABC=S△DFC; (3)根据(2)得图中阴影部分面积和是△ABC面积三倍,若图中阴影部分面积和有最大值,则三角形ABC面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大.因此S阴影部分面积和=3S△ABC=3××3×4=18. (1)证明:在△ABC与△DFC中, ∵, ∴△ABC≌△DFC. ∴△ABC与△DFC面积相等; (2)解:成立.理由如下: 如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q. ∴∠APC=∠DQC=90°. ∵四边形ACDE,BCFG均为正方形, ∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°, ∴∠ACP=∠DCQ. ∴, △APC≌△DQC(AAS), ∴AP=DQ. 又∵S△ABC=BC•AP,S△DFC=FC•DQ, ∴S△ABC=S△DFC; (3)解:根据(2)得图中阴影部分面积和是△ABC面积三倍, 若图中阴影部分面积和有最大值,则三角形ABC面积最大, ∴当△ABC是直角三角形,即∠C是90度时,阴影部分面积和最大. ∴S阴影部分面积和=3S△ABC=3××3×4=18. 考点:四边形综合题 13.如图,在平面直角坐标系xOy中,四边形OABC顶点A在x轴正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO中点,连结DE、EF、FG、GD. (1)若点C在y轴正半轴上,当点B坐标为(2,4)时,判断四边形DEFG形状,并阐明理由. (2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度取值范围. (3)若在点C运动过程中,四边形DEFG一直为正方形,当点C从X轴负半轴通过Y轴正半轴,运动至X轴正半轴时,直接写出点B运动途径长. 【答案】(1)正方形(2)(3)2π 【解析】 分析:(1)连接OB,AC,阐明OB⊥AC,OB=AC,可得四边形DEFG是正方形. (2)由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, 故可得结论; (3)根据题意计算弧长即可. 详解:(1)正方形,如图1,证明连接OB,AC,阐明OB⊥AC,OB=AC,可得四边形DEFG是正方形. (2) 如图2,由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, ∴ ; (3)2π. 如图3,当四边形DEFG是正方形时,OB⊥AC,且OB=AC,构造△OBE≌△ACO,可得B点在以E(0,4)为圆心,2为半径圆上运动. 因此当C点从x轴负半轴到正半轴运动时,B点运动途径为2 . 图1 图2 图3 点睛:本题重要考察了正方形判定,菱形性质以及弧长计算.灵活运用正方形判定定理和菱形性质运用是解题关键. 14.正方形ABCD边长为1,对角线AC与BD相交于点O,点E是AB边上一种动点(点E不与点A、B重叠),CE与BD相交于点F,设线段BE长度为x. (1)如图1,当AD=2OF时,求出x值; (2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE面积为S,试求S与x函数关系式并求出S最大值. 【答案】(1)x=﹣1; (2)S=﹣(x﹣)2+(0<x<1), 当x=时,S值最大,最大值为,. 【解析】 试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到成果; (2)过P作PG⊥AB交AB延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形性质得到EB=PG=x,由三角形面积公式得到S=(1﹣x)•x,根据二次函数性质即可得到结论. 试题解析:(1)过O作OM∥AB交CE于点M,如图1, ∵OA=OC, ∴CM=ME, ∴AE=2OM=2OF, ∴OM=OF, ∴, ∴BF=BE=x, ∴OF=OM=, ∵AB=1, ∴OB=, ∴, ∴x=﹣1; (2)过P作PG⊥AB交AB延长线于G,如图2, ∵∠CEP=∠EBC=90°, ∴∠ECB=∠PEG, ∵PE=EC,∠EGP=∠CBE=90°, 在△EPG与△CEB中, , ∴△EPG≌△CEB, ∴EB=PG=x, ∴AE=1﹣x, ∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1), ∵﹣<0, ∴当x=时,S值最大,最大值为,. 考点:四边形综合题 15.已知,以为边在外作等腰,其中. (1)如图①,若,,求度数. (2)如图②,,,,. ①若,,长为______. ②若变化大小,但,面积与否变化?若不变,求出其值;若变化,阐明变化规律. 【答案】(1)120°;(2)①2;②2 【解析】 试题分析:(1)根据SAS,可首先证明△AEC≌△ABD,再运用全等三角形性质,可得对应角相等,根据三角形外角定理,可求出∠BFC度数; (2)①如图2,在△ABC外作等边△BAE,连接CE,运用旋转法证明△EAC≌△BAD,可证∠EBC=90°,EC=BD=6,由于BC=4,在Rt△BCE中,由勾股定理求BE即可; ②过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE中点K,连接AK,仿照(2)运用旋转法证明△EAC≌△BAD,求得EC=DB,运用勾股定理即可得出结论. 试题解析: 解:(1)∵AE=AB,AD=AC, ∵∠EAB=∠DAC=60°, ∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC, ∴∠EAC=∠DAB, 在△AEC和△ABD中 ∴△AEC≌△ABD(SAS), ∴∠AEC=∠ABD, ∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE, ∴∠BFC=∠AEB+∠ABE=120°, 故答案为120°; (2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE. 由(1)可知△EAC≌△BAD. ∴EC=BD. ∴EC=BD=6, ∵∠BAE=60°,∠ABC=30°, ∴∠EBC=90°. 在RT△EBC中,EC=6,BC=4, ∴EB===2 ∴AB=BE=2. ②若变化α,β大小,但α+β=90°,△ABC面积不变化, 如下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE中点K,连接AK. ∵AH⊥BC于H, ∴∠AHC=90°. ∵BE∥AH, ∴∠EBC=90°. ∵∠EBC=90°,BE=2AH, ∴EC2=EB2+BC2=4AH2+BC2. ∵K为BE中点,BE=2AH, ∴BK=AH. ∵BK∥AH, ∴四边形AKBH为平行四边形. 又∵∠EBC=90°, ∴四边形AKBH为矩形.∠ABE=∠ACD, ∴∠AKB=90°. ∴AK是BE垂直平分线. ∴AB=AE. ∵AB=AE,AC=AD,∠ABE=∠ACD, ∴∠EAB=∠DAC, ∴∠EAB+∠EAD=∠DAC+∠EAD, 即∠EAC=∠BAD, 在△EAC与△BAD中 ∴△EAC≌△BAD. ∴EC=BD=6. 在RT△BCE中,BE==2, ∴AH=BE=, ∴S△ABC=BC•AH=2 考点:全等三角形判定与性质;等腰三角形性质
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2025年备战中考数学平行四边形培优易错试卷练习含答案附详细答案.doc
    链接地址:https://www.zixin.com.cn/doc/13012933.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork