分享
分销 收藏 举报 申诉 / 14
播放页_导航下方通栏广告

类型2025年吉林省东辽五中高一数学第一学期期末综合测试模拟试题含解析.doc

  • 上传人:y****6
  • 文档编号:12794130
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:14
  • 大小:706.50KB
  • 下载积分:12.58 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2025 吉林省 东辽 中高 数学 第一 学期 期末 综合测试 模拟 试题 解析
    资源描述:
    2025年吉林省东辽五中高一数学第一学期期末综合测试模拟试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.某工厂设计了一款纯净水提炼装置,该装置可去除自来水中的杂质并提炼出可直接饮用的纯净水,假设该装置每次提炼能够减少水中50%的杂质,要使水中的杂质不超过原来的4%,则至少需要提炼的次数为()(参考数据:取) A.5 B.6 C.7 D.8 2.下列命题中不正确的是( ) A.一组数据1,2,3,3,4,5的众数大于中位数 B.数据6,5,4,3,3,3,2,2,2,1的分位数为5 C.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙 D.为调查学生每天平均阅读时间,某中学从在校学生中,利用分层抽样的方法抽取初中生20人,高中生10人.经调查,这20名初中生每天平均阅读时间为60分钟,这10名高中生每天平均阅读时间为90分钟,那么被抽中的30名学生每天平均阅读时间为70分钟 3.已知函数,则下列选项中正确的是( ) A.函数是单调增函数 B.函数的值域为 C.函数为偶函数 D.函数的定义域为 4.在中,已知,则角() A. B. C. D.或 5.已知为平面,为直线,下列命题正确的是 A.,若,则 B.,则 C.,则 D.,则 6.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为 A. B. C. D. 7.定义运算,若函数,则的值域是() A. B. C. D. 8.已知,则化为( ) A. B. C.m D.1 9.若,,,,则( ) A. B. C. D. 10.不论a取何正实数,函数恒过点(  ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知,,且,若不等式恒成立,则实数m的取值范围为______ 12.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______. 13.不等式的解集为_________________. 14.已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______. 15.若函数是奇函数,则__________. 16.已知集合,若,则_______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.函数的定义域且,对定义域D内任意两个实数,,都有成立 (1)求的值并证明为偶函数; 18.设两个向量,,满足,. (1)若,求、的夹角; (2)若、夹角为,向量与夹角为钝角,求实数的取值范围. 19.设函数 (1)若不等式解集,求、的值; (2)若,在上恒成立,求实数的取值范围 20.已知函数是二次函数,, (1)求的解析式; (2)解不等式 21.已知函数的最小正周期为4,且满足 (1)求的解析式 (2)是否存在实数满足?若存在,请求出的取值范围;若不存在,请说明理由 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】根据题意列出相应的不等式,利用对数值计算可得答案. 【详解】设经过次提炼后,水中的杂质不超过原来的4%, 由题意得, 得, 所以至少需要5次提炼, 故选:A. 2、A 【解析】由中位数以及众数判断A;由百分位数的定义计算判断B;计算乙组数据的方差判断C;计算被抽中的30名学生每天平均阅读时间从而判断D. 【详解】对于A,中位数为和众数相等,故A错误; 对于B,将该组数据从小到大排列为,,则该组数据的分位数为5,故B正确; 对于C,乙组数据,方差为,则这两组数据中较稳定的是乙,故C正确; 对于D,被抽中的30名学生每天平均阅读时间为,故D正确; 故选:A 3、D 【解析】应用换元法求的解析式,进而求其定义域、值域,并判断单调性、奇偶性,即可知正确选项. 【详解】由题意,由,则,即. 令,则 ∴,其定义域为不是偶函数, 又故不单调增函数, 易得,则, ∴. 故选:D 4、C 【解析】利用正弦定理求出角的正弦值,再求出角的度数. 【详解】因为, 所以, 解得:,, 因为, 所以. 故选:C. 5、D 【解析】选项直线有可能在平面内;选项需要直线在平面内才成立;选项两条直线可能异面、平行或相交.选项符合面面平行的判定定理,故正确. 6、A 【解析】由题意利用函数的图象变换法则,即可得出结论 【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选 【点睛】本题主要考查函数的图象变换法则,注意对的影响 7、C 【解析】由定义可得,结合指数函数性质即可求出. 【详解】由定义可得, 当时,,则, 当时,,则, 综上,的值域是. 故选:C. 8、C 【解析】把根式化为分数指数幂进行运算 【详解】,. 故选:C 9、C 【解析】由于,所以先由已知条件求出,的值,从而可求出答案 【详解】, 因为,, 所以,, 因为,, 所以,, 则 故选:C 【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题. 10、A 【解析】令指数为0,即可求得函数恒过点 【详解】令x+1=0,可得x=-1,则 ∴不论取何正实数,函数恒过点(-1,-1) 故选A 【点睛】本题考查指数函数的性质,考查函数恒过定点,属于基础题 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由基本不等式求得的最小值,解不等式可得的范围 【详解】∵,,, , ∴, 当且仅当,即时等号成立, ∴的最小值为8, 由解得, 故答案为: 12、 ①. ②.0.5 【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可. 【详解】 由题中的三视图可得,原几何体如图所示, 其中,,正四棱锥的高为, , , 所以该漏斗的容积为; 正视图为该几何体的轴截面, 设该漏斗外接球的半径为,设球心为, 则, 因为, 又, 所以, 整理可得,解得, 所以该漏斗存在外接球,则 故答案为:①;②. 13、或. 【解析】利用一元二次不等式的求解方法进行求解. 【详解】因为,所以,所以或, 所以不等式的解集为或. 故答案为:或. 14、-8 【解析】答案:-8.解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角. 15、 【解析】根据题意,得到,即可求解. 【详解】因为是奇函数,可得. 故答案为:. 16、 【解析】根据求得,由此求得. 【详解】由于,所以,所以. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1),证明见解析 (2) (3) 【解析】(1)取得到,取得到,取得到,得到答案. (2)证明函数在上单调递增,在上单调递减,得到,结合定义域得到答案. (3)根据函数单调性和奇偶性得到,考虑,,三种情况,得到函数的最值,解不等式得到答案. 【小问1详解】 取得到,得到, 取得到,得到, 取得到,即,故函数为偶函数. 【小问2详解】 设, 则, ,故,即,函数单调递减. 函数为偶函数,故函数在上单调递增. ,故,且,解得. 【小问3详解】 , 根据(2)知:,,恒成立, 故,, 当时,,当时,, 当时,, 当,即时等号成立,,故. 综上所述:,解得,,故. 18、(1);(2)且. 【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角; (2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解. 【详解】(1)因,所以, 即,又,,所以, 所以,又, 所以向量、的夹角是. (2)因为向量与的夹角为钝角,所以, 且向量与不反向共线, 即, 又、夹角为,所以, 所以,解得, 又向量与不反向共线, 所以,解得, 所以的取值范围是且. 【点睛】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题. 19、(1),;(2). 【解析】(1)分析可知的两根是、,利用韦达定理可求得实数、的值; (2)分析可知不等式在上恒成立,可得出,由此可解得实数的取值范围. 【详解】由已知可知,方程的两根是、且, 所以,解得; (2),可得,, 因为在上恒成立,则在上恒成立, 所以,,解得. 因此,实数的取值范围是. 20、(1) (2) 【解析】(1)根据得对称轴为,再结合顶点可求解; (2)由(1)得,然后直接解不等式即可. 【小问1详解】 由,知此二次函数图象的对称轴为, 又因为,所以是的顶点, 所以设 因,即 所以得 所以 【小问2详解】 因为所以 化为,即或 不等式的解集为 21、(1) (2)存在; 【解析】(1)因为的最小正周期为4,可求得,再根据满足,可知的图象关于点对称,结合,即可求出的值,进而求出结果; (2)由(1)可得,再根据,在同一坐标系中作出与的大致图象,根据图像并结合的单调性,建立方程,即可求出,由此即可求出结果. 【小问1详解】 解:因为的最小正周期为4,所以 因为满足, 所以的图象关于点对称, 所以, 所以,即, 又,所以 所以的解析式为 【小问2详解】 解:由,可得 当时,, 在同一坐标系中作出与的大致图象,如图所示, 当时,, 再结合的单调性可知点的横坐标即方程的根,解得 结合图象可知存在实数满足,的取值范围是
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2025年吉林省东辽五中高一数学第一学期期末综合测试模拟试题含解析.doc
    链接地址:https://www.zixin.com.cn/doc/12794130.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork