云南省丽江市古城二中2025-2026学年数学高一上期末联考模拟试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 丽江市 古城 2025 2026 学年 数学 上期 联考 模拟 试题 解析
- 资源描述:
-
云南省丽江市古城二中2025-2026学年数学高一上期末联考模拟试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知是上的减函数,那么的取值范围是() A. B. C. D. 2.下列函数中,既在R上单调递增,又是奇函数的是() A. B. C. D. 3.函数在上的最小值为,最大值为2,则的最大值为() A. B. C. D.2 4.设,则下列不等式中不成立的是( ) A. B. C. D. 5.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时 A.6 B.12 C.18 D.24 6.已知在海中一孤岛的周围有两个观察站,且观察站在岛的正北5海里处,观察站在岛的正西方.现在海面上有一船,在点测得其在南偏西60°方向相距4海里处,在点测得其在北偏西30°方向,则两个观察站与的距离为 A. B. C. D. 7.已知函数.在下列区间中,包含零点的区间是() A.(0,1) B.(1,2) C.(2,3) D.(3,4) 8.已知函数,,其中,若,,使得成立,则() A. B. C. D. 9.已知函数,则是 A.最小正周期为的奇函数 B.最小正周期为的偶函数 C.最小正周期为的奇函数 D.最小正周期为的偶函数 10.若是圆上动点,则点到直线距离的最大值 A.3 B.4 C.5 D.6 二、填空题:本大题共6小题,每小题5分,共30分。 11.圆关于直线的对称圆的标准方程为___________. 12.果蔬批发市场批发某种水果,不少于千克时,批发价为每千克元,小王携带现金3000元到市场采购这种水果,并以此批发价买进,如果购买的水果为千克,小王付款后剩余现金为元,则与之间的函数关系为_______;的取值范围是________. 13.空间两点与的距离是___________. 14.若的最小正周期为,则的最小正周期为______ 15.函数的部分图象如图所示.若,且,则_____________ 16.函数的定义域为_______________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数(且). (1)当时, ,求的取值范围; (2)若在上最小值大于1,求的取值范围. 18.已知函数的一系列对应值如下表: (1)根据表格提供的数据求函数的一个解析式; (2)根据(1)的结果,若函数周期为,当时,方程 恰有两个不同的解,求实数的取值范围. 19.设S={x|x=m+n,m、n∈Z} (1)若a∈Z,则a是否是集合S中的元素? (2)对S中的任意两个x1、x2,则x1+x2、x1·x2是否属于S? 20.已知. (1)求及; (2)若,,求的值. 21.设函数 (1)求函数的最小正周期和单调递增区间; (2)求函数在上的最大值与最小值及相应的x的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】由为上减函数,知递减,递减, 且,从而得,解出即可 【详解】因为为上的减函数, 所以有, 解得:, 故选:A. 2、B 【解析】逐一判断每个函数的单调性和奇偶性即可. 【详解】是奇函数,但在R上不单调递增,故A不满足题意; 既在R上单调递增,又是奇函数,故B满足题意; 、不是奇函数,故C、D不满足题意; 故选:B 3、B 【解析】将写成分段函数,画出函数图象数形结合,即可求得结果. 【详解】当x≥0时,, 当<0时,, 作出函数的图象如图: 当时,由=,解得=2 当时, 当<0时,由, 即, 解得=, ∴此时=, ∵[]上的最小值为,最大值为2, ∴2,, ∴的最大值为, 故选:B 【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题. 4、B 【解析】对于A,C,D利用不等式的性质分析即可,对于B举反例即可 【详解】对于A,因为,所以,所以,即,所以A成立; 对于B,若,,则,,此时,所以B不成立; 对于C,因为,所以,所以C成立; 对于D,因为,所以,则,所以D成立, 故选:B. 【点睛】本题考查不等式的性质的应用,属于基础题. 5、A 【解析】先阅读题意,再结合指数运算即可得解. 【详解】解:由题意有,,则,即, 则, 即该食品在的保险时间是6小时, 故选A. 【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题. 6、D 【解析】画出如下示意图 由题意可得,,又, 所以A,B,C,D四点共圆,且AC为直径、 在中,, 由余弦定理得, ∴ ∴(其中为圆的半径).选D 7、C 【解析】根据导数求出函数在区间上单调性,然后判断零点区间. 【详解】解:根据题意可知和 在上是单调递减函数 在上单调递减 而 有函数的零点定理可知,零点的区间为. 故选:C 8、B 【解析】首先已知等式变形为,构造两个函数,,问题可转化为这两个函数的值域之间的包含关系 【详解】∵,,∴,又,∴, ∴由得,, 设,, 则,,,∴的值域是值域的子集 ∵,时,,显然,(否则0属于的值域,但) ∴, ∴ (*) 由上讨论知同号, 时,(*)式可化为,∴,, 当时,(*)式可化为,∴,无解 综上: 故选:B 【点睛】本题考查函数恒成立问题,解题关键是掌握转化与化归思想.首先是分离两个变量,然后构造新函数,问题转化为两个函数值域之间的包含关系.其次通过已知关系确定函数值域的形式(或者参数的一个范围),在这个范围解不等式才能非常简单地求解 9、B 【解析】先求得,再根据余弦函数的周期性、奇偶性,判断各个选项是否正确,从而得出结论 【详解】∵, ∴=, ∵,且T=,∴是最小正周期为偶函数, 故选B. 【点睛】本题主要考查诱导公式,余弦函数的奇偶性、周期性,属于基础题 10、C 【解析】圆的圆心为(0,3),半径为1. 是圆上动点,则点到直线距离的最大值为圆心到直线的距离加上半径即可. 又直线恒过定点,所以. 所以点到直线距离的最大值为4+1=5. 故选C. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可 【详解】由题,圆的标准方程为,即圆心,半径为, 设对称圆的圆心为,则,解得, 所以对称圆的方程为, 故答案为: 【点睛】本题考查圆关于直线对称的圆,属于基础题 12、 ①. ②. 【解析】根据题意,直接列式,根据题意求的最小值和最大值,得到的取值范围. 【详解】由题意可知函数关系式是, 由题意可知最少买千克,最多买千克,所以函数的定义域是. 故答案为:; 13、 【解析】根据两点间的距离求得正确答案. 【详解】. 故答案为: 14、 【解析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期. 【详解】的最小正周期为,即,则 所以的最小正周期为 故答案为: 15、## 【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出. 【详解】由图象可知, ,即, 则, 此时,, 由于, 所以,即. ,且, 由图象可知,, 则. 故答案为:. 16、 【解析】由题可知,解不等式即可得出原函数的定义域. 【详解】对于函数,有, 即,解得, 因此,函数的定义域为. 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1).(2). 【解析】(1)当时,得到函数的解析式,把不等式,转化为,即可求解; (2)由在定义域内单调递减,分类讨论,即可求解函数的最大值,得到答案. 【详解】(1)当时, , ,得. (2)在定义域内单调递减, 当时,函数在上单调递减, ,得. 当时,函数在上单调递增, ,不成立. 综上: . 【点睛】本题主要考查了指数函数的图象与性质的应用问题,其中解答中由指数函数的解析式转化为相应的不等式,以及根据指数函数的单调性分类讨论求解是解答的关键,着重考查了推理与运算能力. 18、(1)(2) 【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可; (2)由函数的最小正周期求出的值,再利用换元法,令,结合函数的图象求出方程恰有两个不同的解时的取值范围 【详解】解:(1)绘制函数图象如图所示: 设的最小正周期为,得.由得 又解得, 令,即,, 据此可得:,又,令可得 所以函数的解析式为 (2)因为函数的周期为,又,所以 令,因为,所以 在上有两个不同的解,等价于函数与的图象有两个不同的交点,, 所以方程在时恰好有两个不同的解的条件是, 即实数的取值范围是 【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了函数与方程的应用问题,属于中档题 19、(1)见解析;(2)见解析. 【解析】(1)由a=a+0×即可判断; (2)不妨设x1=m+n,x2=p+q,经过运算得x1+x2=(m+n)+(p+q),x1·x2=(mp+2nq)+(mq+np),即可判断. 试题解析: (1)a是集合S的元素,因为a=a+0×∈S (2)不妨设x1=m+n,x2=p+q,m、n、p、q∈Z 则x1+x2=(m+n)+(p+q)=(m+n)+(p+q),∵m、n、p、q∈Z.∴p+q∈Z,m+n∈Z.∴x1+x2∈S, x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m、n、p、q∈Z 故mp+2nq∈Z,mq+np∈Z ∴x1·x2∈S 综上,x1+x2、x1·x2都属于S 点睛:集合是高考中必考的知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错 20、(1),; (2). 【解析】(1)应用二倍角正切公式求,由和角正切公式求. (2)根据已知角的范围及函数值,结合同角三角函数的平方关系求,,进而应用和角正弦公式求. 【小问1详解】 , . 【小问2详解】 , . , . . 21、(1)最小正周期,单调递增区间为,; (2)时函数取得最小值,时函数取得最大值; 【解析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得; (2)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得; 【小问1详解】 解:因为 , 即,所以函数的最小正周期, 令,, 解得,, 所以函数的单调递增区间为,; 【小问2详解】 解:因为,所以, 所以当,即时函数取得最小值,即, 当,即时函数取得最大值,即;展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




云南省丽江市古城二中2025-2026学年数学高一上期末联考模拟试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12794091.html