陕西省汉中中学2026届数学高一上期末监测模拟试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陕西省 汉中 中学 2026 数学 上期 监测 模拟 试题 解析
- 资源描述:
-
陕西省汉中中学2026届数学高一上期末监测模拟试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知是函数的反函数,则的值为() A.0 B.1 C.10 D.100 2.已知函数,函数有四个不同的的零点,,,,且,则() A.a的取值范围是(0,) B.的取值范围是(0,1) C. D. 3.长方体中,,,E为中点,则异面直线与CE所成角为() A. B. C. D. 4.若全集,且,则() A.或 B.或 C. D.或. 5.已知aR且a>b,则下列不等式一定成立的是() A.> B.>ab C.> D.a(a—b)>b(a—b) 6.函数的单调递增区间是() A. B. C. D. 7.如图,其所对应的函数可能是( ) A B. C. D. 8.下列各题中,p是q的充要条件的是() A.p:,q: B.p:,q: C.p:四边形是正方形,q:四边形的对角线互相垂直且平分 D.p:两个三角形相似,q:两个三角形三边成比例 9.函数的定义域是 A. B. C. D. 10.已知全集,集合,,则() A.{2,3,4} B.{1,2,4,5} C.{2,5} D.{2} 二、填空题:本大题共6小题,每小题5分,共30分。 11.若函数过点,则的解集为___________. 12.函数在上的最小值是__________ 13.在空间直角坐标系中,点和之间的距离为____________. 14.已知函数,又有定义在R上函数满足:(1), ,均恒成立; (2)当时,,则_____, 函数在区间中的所有零点之和为_______. 15.已知是球上的点,,,,则球的表面积等于________________ 16.函数的值域是__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数的部分图象如图所示. (1)求的解析式; (2)若,求的最值以及取得最值时相应的的值. 18.设函数,其中. (1)求函数的值域; (2)若,讨论在区间上的单调性; (3)若在区间上为增函数,求的最大值. 19.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD (1)求证:直线CM⊥面DFN; (2)求点C到平面FDM的距离 20.若存在实数、使得,则称函数为、的“函数” (1)若.为、的“函数”,其中为奇函数,为偶函数,求、的解析式; (2)设函数,,是否存在实数、使得为、的“函数”,且同时满足:①是偶函数;②的值域为.若存在,请求出、的值;若不存在,请说明理由.(注:为自然数.) 21.已知函数)的最大值为2 (1)求m的值; (2)求使成立的x的取值集合; (3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】根据给定条件求出的解析式,再代入求函数值作答. 【详解】因是函数的反函数,则,, 所以的值为0. 故选:A 2、D 【解析】将问题转化为与有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误. 【详解】有四个不同的零点、、、,即有四个不同的解 的图象如下图示, 由图知:, 所以,即的取值范围是(0,+∞) 由二次函数的对称性得:, 因为,即,故 故选:D 【点睛】关键点点睛:将零点问题转化为函数交点问题,应用数形结合判断交点横坐标的范围或数量关系. 第II卷 3、C 【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角 【详解】解:长方体中,,,为中点, 以为原点,为轴,为轴,为轴,建立空间直角坐标系, ,,,, ,,, 设异面直线与所成角为, 则, , 异面直线与所成角为 故选: 【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题 4、D 【解析】根据集合补集的概念及运算,准确计算,即可求解. 【详解】由题意,全集,且, 根据集合补集的概念及运算,可得或. 故选:D. 5、D 【解析】对于A,B,C举反例判断即可,对于D,利用不等式的性质判断 【详解】解:对于A,若,则,所以A错误; 对于B,若,则,此时,所以B错误; 对于C,若,则,此时,所以C错误; 对于D,因为,所以,所以,所以D正确, 故选:D 6、C 【解析】根据诱导公式变性后,利用正弦函数的递减区间可得结果. 【详解】因为, 由,得, 所以函数的单调递增区间是. 故选:C 7、B 【解析】代入特殊点的坐标即可判断答案. 【详解】设函数为,由图可知,,排除C,D,又,排除A. 故选:B. 8、D 【解析】根据充分条件、必要条件的判定方法,逐项判定,即可求解. 【详解】对于A中,当时,满足,所以充分性不成立, 反之:当时,可得,所以必要性成立, 所以是的必要不充分条件,不符合题意; 对于B中,当时,可得,即充分性成立; 反之:当时,可得,即必要性不成立, 所以是的充分不必要条件,不符合题意; 对于C中,若四边形是正方形,可得四边形的对角线互相垂直且平分,即充分性成立; 反之:若四边形的对角线互相垂直且平分,但四边形不一定是正方形,即必要性不成立, 所以是充分不必要条件,不符合题意; 对于D中,若两个三角形相似,可得两个三角形三边成比例,即充分性成立; 反之:若两个三角形三边成比例,可得两个三角形相似,即必要性成立, 所以是的充分必要条件,符合题意. 故选:D. 9、D 【解析】由,求得的取值集合得答案 详解】解:由,得, 函数定义域是 故选:D 【点睛】本题考查函数的定义域及其求法,关键是明确正切函数的定义域,属于基础题 10、B 【解析】根据补集的定义求出,再利用并集的定义求解即可. 【详解】因为全集,, 所以, 又因为集合, 所以, 故选:B. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由函数过点可求得参数a的值,进而解对数不等式即可解决. 详解】由函数过点可得, ,则,即,此时 由可得即 故答案为: 12、 【解析】在上单调递增 最小值为 13、 【解析】利用空间两点间的距离公式求解. 【详解】由空间直角坐标系中两点间距离公式可得. 故答案为: 14、 ①.1 ②.42 【解析】求出的周期和对称轴,再结合图象即可. 【详解】由条件可知函数的图象关于对称轴对称, 由可知,,则周期, 即, 函数在区间中的所有零点之和即为函数与函数 图象的交点的横坐标之和, 当时,为单调递增函数,, ,且区间关于对称, 又∵由已知得也是的对称轴,∴只需用研究直线左侧部分即可, 由图象可知左侧有7个交点,则右侧也有7个交点,将这14个交点的横坐标从小到大排列,第个数记为,由对称性可知,则, 同理,…,, ∴. 故答案为:,. 15、 【解析】 由已知S,A,B,C是球O表面上的点,所以 ,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积 点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键 16、 【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案. 【详解】由,得, 可设, 故,不妨取为锐角, 而,时取最大值), , 故函数的值域为, 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2)时,,时, 【解析】(1)根据图像先确定,再根据周期确定,代入特殊点确定,即可得到函数解析式; (2)将作为一个整体,求出其取值范围,进而求得函数最值,以及相应的x的值. 【小问1详解】 由图知,, ,即, 得,所以, 又,所以, , 即,由得, 所以. 【小问2详解】 由得, 所以当,即时,, 当,即时,. 18、(1) (2)在区间上单调递增,在上单调递减 (3) 【解析】(1)首先化简函数,再求函数的值域; (2)利用代入法,求的范围,再结合函数的性质,即可求解函数的单调性; (3)由(1)可知,,首先求的范围,再根据函数的单调区间,求的最大值. 【小问1详解】 , 所以函数的值域是; 【小问2详解】 时,, 当,, 当,即时,函数单调递增, 当,即时,函数单调递减, 所以函数的单调递增区间是,函数的单调递减区间是; 【小问3详解】 若,则, 若函数在区间上为增函数, 则,解得:, 所以的最大值是. 19、(1)见解析;(2) 【解析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离 【详解】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点, 将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD 因为长方形ABCD,DC=CN=2,所以四边形DCNM是正方形, ∴DN⊥CM, 因为平面MNFE⊥平面ABCD,FN⊥MN, MNFE∩平面ABCD=MN, 所以FN⊥平面DCNM,因为CM平面DCNM, 所以CM⊥FN, 又DN∩FN=N,∴CM⊥平面DFN (2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系, 则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0), =(2,-2,0),=(0,-2,0),=(2,0,2), 设平面FDM的法向量=(x,y,z), 则,取x=1,得=(1,0,-1), ∴点C到平面FDM的距离d=== 【点睛】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题 20、(1),; (2)存在;,. 【解析】(1)由已知条件可得出关于、的等式组,由此可解得函数、的解析式; (2)由偶函数的定义可得出,由函数的值域结合基本不等式以及对数函数的单调性可求得的值,进而可求得的值,即可得解. 【小问1详解】 解:因为为、的“函数”, 所以①,所以 因为为奇函数,为偶函数,所以, 所以② 联立①②解得, 【小问2详解】 解:假设存在实数、,使得为,的“函数” 则 ①因为是偶函数,所以 即,即, 因为,整理得 因为对恒成立,所 ②, 因为,当且仅当,即时取等号 所以, 由于的值域为,所以,且 又因为,所以, 综上,存在,满足要求 21、(1) (2) (3) 【解析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果; (2)结合正弦型函数图象,解三角不等式即可求出结果; (3)结合伸缩变换求出函数的解析式,进而求出零点,然后结合题意即可求出结果. 【小问1详解】 因为的最大值为1,所以的最大值为, 依题意,,解得 【小问2详解】 由(1)知, 由, 得 所以 解得 所以,使成立的x取值集合为 【小问3详解】 依题意,, 因为是的一个零点,所以, 所以 所以, 因为,所以, 所以t的最大值为展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




陕西省汉中中学2026届数学高一上期末监测模拟试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12781201.html