云南省开远市市级名校2025年初三4月质量检测试题数学试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 开远市 名校 2025 年初 质量 检测 试题 数学试题 解析
- 资源描述:
-
云南省开远市市级名校2025年初三4月质量检测试题数学试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( ) A. B. C. D. 2.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( ) A. B. C. D. 3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( ) A.1 B.2 C.3 D.4 4.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是( ) A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b 5.下列二次根式,最简二次根式是( ) A. B. C. D. 6.下列式子中,与互为有理化因式的是( ) A. B. C. D. 7.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为( ) A.6 B.8 C.10 D.12 8.若实数 a,b 满足|a|>|b|,则与实数 a,b 对应的点在数轴上的位置可以是( ) A. B. C. D. 9.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ) A. B. C. D. 10.下列命题是真命题的是( ) A.如实数a,b满足a2=b2,则a=b B.若实数a,b满足a<0,b<0,则ab<0 C.“购买1张彩票就中奖”是不可能事件 D.三角形的三个内角中最多有一个钝角 11.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=( ) A.6 B. C.12﹣π D.12﹣π 12.下列分式是最简分式的是( ) A. B. C. D. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____ 14.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是 。 15.已知关于x的方程有两个不相等的实数根,则m的最大整数值是 . 16.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块. 17.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__. 18.化简:÷(﹣1)=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根. 20.(6分)先化简,后求值:,其中. 21.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:. 22.(8分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC. (1)求证:四边形OCAD是平行四边形; (2)填空:①当∠B= 时,四边形OCAD是菱形; ②当∠B= 时,AD与相切. 23.(8分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C. (1)如图1,若抛物线经过点A和D(﹣2,0). ①求点C的坐标及该抛物线解析式; ②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由; (2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围. 24.(10分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍. (1)求降价后乙种水果的售价是多少元/斤? (2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤? 25.(10分)如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线. (1)求的值和点的坐标; (2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式; (3)当时,若直线与直线和(2)反比例函数的图象分别交于点,,当间距离大于等于2时,求的取值范围. 26.(12分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF. (1)求抛物线解析式; (2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长; (3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标. 27.(12分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分) 根据所给信息,解答以下问题: (1)在扇形统计图中,C对应的扇形的圆心角是_____度; (2)补全条形统计图; (3)所抽取学生的足球运球测试成绩的中位数会落在_____等级; (4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人? 参考答案 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D 【解析】 由题意知:△ABC≌△DEC, ∴∠ACB=∠DCE=30°,AC=DC, ∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°. 故选D. 本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等. 2、C 【解析】 先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可. 【详解】 解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体, 后面一排分别有2个、3个、1个小正方体搭成三个长方体, 并且这两排右齐,故从正面看到的视图为: . 故选:C. 本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键. 3、D 【解析】 由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 【详解】 ①∵抛物线对称轴是y轴的右侧, ∴ab<0, ∵与y轴交于负半轴, ∴c<0, ∴abc>0, 故①正确; ②∵a>0,x=﹣<1, ∴﹣b<2a, ∴2a+b>0, 故②正确; ③∵抛物线与x轴有两个交点, ∴b2﹣4ac>0, 故③正确; ④当x=﹣1时,y>0, ∴a﹣b+c>0, 故④正确. 故选D. 本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定. 4、C 【解析】 ∵∠C=90°, ∴cosA=,sinA= ,tanA=,cotA=, ∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b, ∴只有选项C正确, 故选C. 【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键. 5、C 【解析】 检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是. 【详解】 A、被开方数含开的尽的因数,故A不符合题意; B、被开方数含分母,故B不符合题意; C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意; D、被开方数含能开得尽方的因数或因式,故D不符合题意. 故选C. 本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式. 6、B 【解析】 直接利用有理化因式的定义分析得出答案. 【详解】 ∵()(,) =12﹣2, =10, ∴与互为有理化因式的是:, 故选B. 本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定. 7、B 【解析】 根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论. 【详解】 ∵点A的坐标为(﹣3,﹣4), ∴OA==5, ∵四边形AOCB是菱形, ∴AB=OA=5,AB∥x轴, ∴B(﹣8,﹣4), ∵点E是菱形AOCB的中心, ∴E(﹣4,﹣2), ∴k=﹣4×(﹣2)=8, 故选B. 本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键. 8、D 【解析】 根据绝对值的意义即可解答. 【详解】 由|a|>|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D. 本题考查了实数与数轴,熟练运用绝对值的意义是解题关键. 9、D 【解析】 试题分析:A.是轴对称图形,故本选项错误; B.是轴对称图形,故本选项错误; C.是轴对称图形,故本选项错误; D.不是轴对称图形,故本选项正确. 故选D. 考点:轴对称图形. 10、D 【解析】 A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断 B. 同号相乘为正,异号相乘为负,即可判断 C. “购买1张彩票就中奖”是随机事件即可判断 D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断 【详解】 如实数a,b满足a2=b2,则a=±b,A是假命题; 数a,b满足a<0,b<0,则ab>0,B是假命题; 若实“购买1张彩票就中奖”是随机事件,C是假命题; 三角形的三个内角中最多有一个钝角,D是真命题; 故选:D 本题考查了命题与定理,根据实际判断是解题的关键 11、D 【解析】 根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案 【详解】 解:∵BC=4,E为BC的中点, ∴CE=2, ∴S1﹣S2=3×4﹣ , 故选D. 此题考查扇形面积的计算,矩形的性质及面积的计算. 12、C 【解析】 解:A.,故本选项错误; B.,故本选项错误; C.,不能约分,故本选项正确; D.,故本选项错误. 故选C. 点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、 【解析】 根据平行线分线段成比例定理解答即可. 【详解】 解:∵DE∥BC,AD=2BD, ∴, ∵EF∥AB, ∴, 故答案为. 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 14、30° 【解析】 试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半. ∵△AOB是正三角形 ∴∠AOB=60° ∴∠ACB=30°. 考点:圆周角定理 点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成. 15、1. 【解析】 试题分析:∵关于x的方程有两个不相等的实数根, ∴. ∴m的最大整数值为1. 考点:1.一元二次方程根的判别式;2.解一元一次不等式. 16、54 【解析】 试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行; 第一层有7个正方体,第二层有2个正方体,第三层有1个正方体, 共有10个正方体, ∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体, ∴搭成的大正方体的共有4×4×4=64个小正方体, ∴至少还需要64-10=54个小正方体. 【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体. 17、或﹣. 【解析】 试题分析:当点F在OB上时,设EF交CD于点P, 可求点P的坐标为(,1). 则AF+AD+DP=3+x, CP+BC+BF=3﹣x, 由题意可得:3+x=2(3﹣x), 解得:x=. 由对称性可求当点F在OA上时,x=﹣, 故满足题意的x的值为或﹣. 故答案是或﹣. 考点:动点问题. 18、﹣. 【解析】 直接利用分式的混合运算法则即可得出. 【详解】 原式 . 故答案为:. 此题主要考查了分式的化简,正确掌握运算法则是解题关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2. 【解析】 (2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值; (2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值. 【详解】 解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0, 解得 k≥﹣2. ∵k为负整数, ∴k=﹣2,﹣2. (2)当k=﹣2时,不符合题意,舍去; 当k=﹣2时,符合题意,此时方程的根为x2=x2=2. 本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法. 20、, 【解析】 分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可. 详解:原式=•﹣1 =﹣ = 当x=+1时,原式==. 点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 21、1 【解析】解: 取时,原式. 22、(1)证明见解析;(2)① 30°,② 45° 【解析】 试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论; (2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得 ②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得 试题解析:(方法不唯一) (1)∵OA=OC,AD=OC, ∴OA=AD, ∴∠OAC=∠OCA,∠AOD=∠ADO, ∵OD∥AC, ∴∠OAC=∠AOD, ∴∠OAC=∠OCA=∠AOD=∠ADO, ∴∠AOC=∠OAD, ∴OC∥AD, ∴四边形OCAD是平行四边形; (2)①∵四边形OCAD是菱形, ∴OC=AC, 又∵OC=OA, ∴OC=OA=AC, ∴ ∴ 故答案为 ②∵AD与相切, ∴ ∵AD∥OC, ∴ ∴ 故答案为 23、(1)①y=﹣x2+x+3;②P( ,)或P'( ,﹣);(2) ≤a<1; 【解析】 (1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论. 【详解】 (1)①如图2,∵A(1,3),B(1,1), ∴OA=3,OB=1, 由旋转知,∠ABC=91°,AB=CB, ∴∠ABO+∠CBE=91°, 过点C作CG⊥OB于G, ∴∠CBG+∠BCG=91°, ∴∠ABO=∠BCG, ∴△AOB≌△GBC, ∴CG=OB=1,BG=OA=3, ∴OG=OB+BG=4 ∴C(4,1), 抛物线经过点A(1,3),和D(﹣2,1), ∴, ∴, ∴抛物线解析式为y=﹣x2+x+3; ②由①知,△AOB≌△EBC, ∴∠BAO=∠CBF, ∵∠POB=∠BAO, ∴∠POB=∠CBF, 如图1,OP∥BC, ∵B(1,1),C(4,1), ∴直线BC的解析式为y=x﹣, ∴直线OP的解析式为y=x, ∵抛物线解析式为y=﹣x2+x+3; 联立解得,或(舍) ∴P(,); 在直线OP上取一点M(3,1), ∴点M的对称点M'(3,﹣1), ∴直线OP'的解析式为y=﹣x, ∵抛物线解析式为y=﹣x2+x+3; 联立解得,或(舍), ∴P'(,﹣); (2)同(1)②的方法,如图3, ∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴, ∴, ∴抛物线y=ax2﹣6ax+8a+1, 令y=1, ∴ax2﹣6ax+8a+1=1, ∴x1×x2= ∵符合条件的Q点恰好有2个, ∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1, ∴x1×x2=≤1, ∵a<1, ∴8a+1≥1, ∴a≥﹣, 即:﹣≤a<1. 本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标. 24、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤. 【解析】 (1)设降价后乙种水果的售价是x元, 30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500﹣y)斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可. 【详解】 解:(1)设降价后乙种水果的售价是x元,根据题意可得: , 解得:x=2,经检验x=2是原方程的解, 答:降价后乙种水果的售价是2元/斤; (2)设至少购进乙种水果y斤,根据题意可得: 2(500﹣y)+1.5y≤900, 解得:y≥200, 答:至少购进乙种水果200斤. 本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键 25、(1),;(2);的取值范围是:. 【解析】 (1)把代入得出的值,进而得出点坐标; (2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式; (3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围. 【详解】 解:(1)∵直线: 经过点, ∴, ∴, ∴; (2)当时,将代入, 得,, ∴代入得,, ∴; (3)当时,即,而, 如图,,当向下运动但是不超过轴时,符合要求, ∴的取值范围是:. 本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强. 26、 (1) 抛物线解析式为y=﹣;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2(﹣ ,﹣)或E3( ,﹣)或E4(,﹣). 【解析】 (1)将点A、C坐标代入抛物线解析式求解可得; (2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案; (3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案. 【详解】 (1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3; (2)如图1. ∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE. 又∵DC=DE,∴△COD≌△DHE,∴DH=OC. 又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3; (3)如图2,设点D的坐标为(t,0). ∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论: ①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣); ②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣); 综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣). 本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用. 27、(1)117;(2)答案见图;(3)B;(4)30. 【解析】 (1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得. 【详解】 (1)∵总人数为18÷45%=40人, ∴C等级人数为40﹣(4+18+5)=13人, 则C对应的扇形的圆心角是360°×=117°, 故答案为:117; (2)补全条形图如下: (3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级, 所以所抽取学生的足球运球测试成绩的中位数会落在B等级, 故答案为:B. (4)估计足球运球测试成绩达到A级的学生有300×=30人. 本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




云南省开远市市级名校2025年初三4月质量检测试题数学试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12263663.html