含绝对值不等式的解法(含答案).doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 绝对值 不等式 解法 答案
- 资源描述:
-
含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用与的解集求解。 主要知识: 1、绝对值的几何意义:是指数轴上点到原点的距离;是指数轴上,两点间的距离.。 2、与型的不等式的解法。 当时,不等式的解集是 不等式的解集是; 当时,不等式的解集是 不等式的解集是; 3.与型的不等式的解法。 把 看作一个整体时,可化为与型的不等式来求解。 当时,不等式的解集是 不等式的解集是; 当时,不等式的解集是 不等式的解集是; 例1 解不等式 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“” 看着一个整体。答案为。(解略) (二)、定义法:即利用去掉绝对值再解。 例2。解不等式。 分析:由绝对值的意义知,a≥0,a≤0。 解:原不等式等价于<0x(x+2)<0-2<x<0。 (三)、平方法:解型不等式。 例3、解不等式。 解:原不等式 (2x-3+x-1)(2x-3-x+1)<0(3x-4)(x-2)<0 。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式。 分析:由,,得和。和把实数集合分成三个区间,即,,,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x<-2时,得, 解得: 当-2≤x≤1时,得, 解得: 当时,得 解得: 综上,原不等式的解集为。 说明:(1)原不等式的解集应为各种情况的并集; (2)这种解法又叫“零点分区间法”,即通过令每一个绝对值为零求得零点,求解应注意边界值。 三、几何法:即转化为几何知识求解。 例5 对任何实数,若不等式恒成立,则实数k的取值范围为 ( ) (A)k<3 (B)k<-3 (C)k≤3 (D) k≤-3 分析:设,则原式对任意实数x恒成立的充要条件是,于是题转化为求的最小值。 解:、的几何意义分别为数轴上点x到-1和2的距离-的几何意义为数轴上点x到-1与2的距离之差,如图可得其最小值为-3,故选(B)。 四、典型题型 1、解关于的不等式 解:原不等式等价于, 即 ∴ 原不等式的解集为 2、解关于的不等式 解:原不等式等价于 3、解关于的不等式 解:原不等式可化为 ∴ 即 解得: ∴ 原不等式的解集为 4、解关于的不等式 解:⑴ 当时,即,因,故原不等式的解集是空集。 ⑵ 当时,即,原不等式等价于 解得: 综上,当时,原不等式解集为空集;当时,不等式解集为 5、解关于的不等式 解:当时,得,无解 当,得,解得: 当时,得,解得: 综上所述,原不等式的解集为, 6、解关于的不等式 (答案:) 解: 五、巩固练习 1、设函数= ;若,则的取值范围是 . 2、已知,若关于的方程有实根,则的取值范围 是 . 3、不等式的实数解为 . 4、解下列不等式 ⑴ ; ⑵ ; ⑶ ; ⑷ ; ⑸ ; ⑹ () 5、若不等式的解集为,则实数等于 ( ) 6、若,则的解集是( ) 且 且 7、对任意实数,恒成立,则的取值范围是 ; 对任意实数,恒成立,则的取值范围是 ; 若关于的不等式的解集不是空集,则的取值范围是 ; 8、不等式的解集为( ) 9、解不等式: 10、方程的解集为 ,不等式的解集是 ; 12、不等式的解集是( ) 11、不等式的解集是 12、 已知不等式的解集为,求的值 13、解关于的不等式:①解关于的不等式;② 14、不等式的解集为( ). 15、 设集合,,则等于 ( ) 16、不等式的解集是 . 17、设全集,解关于的不等式: (参考答案) 1、 6 ; ; 2、 3、 4、⑴ ⑵ ⑶ ⑷ ⑸ ⑹ 当时,;当时,不等式的解集为 5、C 6、D 7、⑴ ; ⑵ ; ⑶ ; 8、C 9、 10、; 11、D 12、 15 13、① 当时,;当时,;当时, ② 当,即时,不等式的解集为; 当,即时,不等式的解集为; 14、D 15、B 16、, 17、当,即时,不等式的解集为; 当,即时,不等式的解集为; 当,即时,不等式的解集为; 6展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




含绝对值不等式的解法(含答案).doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/11224316.html