分享
分销 收藏 举报 申诉 / 9
播放页_导航下方通栏广告

类型高一数学知识难点复习考点大纲.doc

  • 上传人:可****
  • 文档编号:10903275
  • 上传时间:2025-06-20
  • 格式:DOC
  • 页数:9
  • 大小:32.54KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学知识 难点 复习 考点 大纲
    资源描述:
    高一数学知识难点复习考点大纲   高一年级数学知识点复习1   1.函数的奇偶性   (1)若f(x)是偶函数,那么f(x)=f(-x);   (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);   (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);   (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;   (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;   2.复合函数的有关问题   (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。   (2)复合函数的单调性由“同增异减”判定;   3.函数图像(或方程曲线的对称性)   (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;   (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;   (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);   (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;   (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;   (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;   4.函数的周期性   (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;   (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;   (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;   (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;   (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;   (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;   5.方程k=f(x)有解k∈D(D为f(x)的值域);   a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;   (1)(a>0,a≠1,b>0,n∈R+);   (2)logaN=(a>0,a≠1,b>0,b≠1);   (3)logab的符号由口诀“同正异负”记忆;   (4)alogaN=N(a>0,a≠1,N>0);   6.判断对应是否为映射时,抓住两点:   (1)A中元素必须都有象且;   (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;   7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。   8.对于反函数,应掌握以下一些结论:   (1)定义域上的单调函数必有反函数;   (2)奇函数的反函数也是奇函数;   (3)定义域为非单元素集的偶函数不存在反函数;   (4)周期函数不存在反函数;   (5)互为反函数的两个函数具有相同的单调性;   (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);   9.处理二次函数的问题勿忘数形结合   二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:   排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;   排除了为0这种可能,即对于x0的所有实数,q不能是偶数;   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。   总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;   如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。   在x大于0时,函数的值域总是大于0的实数。   在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。   而只有a为正数,0才进入函数的值域。   由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.   可以看到:   (1)所有的图形都通过(1,1)这点。   (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。   (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。   (4)当a小于0时,a越小,图形倾斜程度越大。   (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。   (6)显然幂函数无界。   解题方法:换元法   解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。   换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化。   它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。   高一年级数学知识点复习3   一、集合有关概念   1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。   2、集合的中元素的三个特性:   1.元素的确定性;   2.元素的互异性;   3.元素的无序性   说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。   (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。   (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。   (4)集合元素的三个特性使集合本身具有了确定性和整体性。   3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}   1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}   2.集合的表示方法:列举法与描述法。   注意啊:常用数集及其记法:   非负整数集(即自然数集)记作:N   正整数集N_或N+整数集Z有理数集Q实数集R   关于“属于”的概念   集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A   列举法:把集合中的元素一一列举出来,然后用一个大括号括上。   描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。   ①语言描述法:例:{不是直角三角形的三角形}   ②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}   4、集合的分类:   1.有限集含有有限个元素的集合   2.无限集含有无限个元素的集合   3.空集不含任何元素的集合例:{x|x2=-5}   二、集合间的基本关系   1.“包含”关系子集   注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。   反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA   2.“相等”关系(5≥5,且5≤5,则5=5)   实例:设A={x|x2-1=0}B={-11}”元素相同”   结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B   ①任何一个集合是它本身的子集。A?A   ②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)   ③如果A?BB?C那么A?C   ④如果A?B同时B?A那么A=B   3.不含任何元素的集合叫做空集,记为Φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集。   三、集合的运算   1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.   记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.   2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.   3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A   A∪φ=AA∪B=B∪A.   4、全集与补集   (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)   记作:CSA即CSA={x?x?S且x?A}   (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。   (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U   
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:高一数学知识难点复习考点大纲.doc
    链接地址:https://www.zixin.com.cn/doc/10903275.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork